Skip to main content

Advertisement

Log in

Extraction of Silk Fibroin with Several Sericin Removal Processes and its Importance in Tissue Engineering: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Sericin is a sticky protein substance, which is generated by the silk-worm for holding the filaments of silk tightly. The main constituent of natural crude silk is made up of sericin and fibroin. Fibroin and sericin play a vital role in increasing the strength, stiffness and on maintaining the constructional integrality of the cocoon. This review reports the role of several types of degumming agents for the removal of sericin from silk surfaces and an overview of silk fibroin approaches in the tissue engineering field. The prime factors responsible for the removal of sericin (degumming) from silk were systematically analyzed and discussed. The key factors affects on modification of the silk surface are includes surfactant, degumming time, temperature, advanced techniques such as ultra-sonication, microwave radiation, infrared radiation, low-temperature oxygen plasma radiation, and PH. These factors influence either individually or cumulatively at the degumming process. Tissue engineering is an emanate and most optimistic approach to restore tissue malfunction by adopting the concept of the technology being practiced using numerous biomaterials, cells, and the nutrient-specific growth factors. Different types of materials include various bio-material and mainly of silk fibroin constituent of it is conceding most optimistic biomaterials in tissue engineering application. Silk fibroin is a naturalistic protein-based polymer with an eminent physiochemical characteristic, are magnificent biocompatibility, amenable biodegradability, proper oxygen, and water-vapor permeability, and least inflammatory reaction. The critical studies accomplishing on the role of Silk fibroin and various approaches adopted in the degumming process is extensively reviewed and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar R, Bajpai S (2015) A study on the effective implementation of sericulture and silk development programs. Int Res J Eng Technol 2:574–578

    Google Scholar 

  2. Sharma K, Kapoor B (2020) Sericulture as a profit-based industry—a review. Indian J Pure Appl Biosci 8:550–562. https://doi.org/10.18782/2582-2845.8210

    Article  Google Scholar 

  3. Tikader A, Vijayan K, Saratchandra B (2013) Muga silkworm, antheraea assamensis (Lepidoptera: Saturniidae)—an overview of distribution, biology and breeding. Eur J Entomol 110:293–300. https://doi.org/10.14411/eje.2013.096

    Article  Google Scholar 

  4. Padaki NV, Bhattacharya A, Das B et al (2014) Studies on the influence of seasonal and regional aspects on the quality of Muga silk. Res J Text Appar 18:25–30. https://doi.org/10.1108/RJTA-18-01-2014-B004

    Article  Google Scholar 

  5. Gogoi S (2016) Assam silk: sericulture. Res Rev J Agric Allied Sci 5:50–54

    Google Scholar 

  6. Sakthivel N, Qadri SMH (2017) Utilization of cassava foliage for large scale production of eri silk. Int J Sci Environ Technol 6:2521–2534

    Google Scholar 

  7. Oduor EO, Ciera L, Adolkar V, Pido O (2021) Physical characterization of eri silk fibers produced in Kenya. J Nat Fibers 18:59–70. https://doi.org/10.1080/15440478.2019.1612306

    Article  CAS  Google Scholar 

  8. Uddin F (2019) Introductory chapter: textile manufacturing processes. Text Manuf Process. https://doi.org/10.5772/intechopen.87968

    Article  Google Scholar 

  9. Reddy N (2020) New developments in degumming silk. Silk Mater Process Appl. https://doi.org/10.1016/b978-0-12-818495-0.00003-x

    Article  Google Scholar 

  10. Lo C-H, Chao Y (2017) Degumming of silk fibers by CO2 supercritical fluid. J Mater Sci Chem Eng 05:1–8. https://doi.org/10.4236/msce.2017.54001

    Article  CAS  Google Scholar 

  11. Dutta S, Talukdar B, Bharali R et al (2013) Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms. Biopolymers 99:326–333. https://doi.org/10.1002/bip.22168

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Luo Z, Zhang Q et al (2019) Effect of degumming methods on the degradation behavior of silk fibroin biomaterials. Fibers Polym 20:45–50. https://doi.org/10.1007/s12221-019-8658-9

    Article  CAS  Google Scholar 

  13. Anis P, Toprak T, Yener E, Capar G (2019) Investigation of the effects of environmentally friendly degumming methods on silk dyeing performance. Text Res J 89:1286–1296. https://doi.org/10.1177/0040517518767156

    Article  CAS  Google Scholar 

  14. Kurioka A, Kurioka F, Yamazaki M (2004) Characterization of sericin powder prepared from citric acid-degraded sericin polypeptides of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 68:774–780. https://doi.org/10.1271/bbb.68.774

    Article  CAS  PubMed  Google Scholar 

  15. Ma D, Wang Y, Dai W (2018) Silk fibroin-based biomaterials for musculoskeletal tissue engineering. Mater Sci Eng C 89:456–469. https://doi.org/10.1016/j.msec.2018.04.062

    Article  CAS  Google Scholar 

  16. Correia C, Bhumiratana S, Yan LP et al (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8:2483–2492. https://doi.org/10.1016/j.actbio.2012.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasoju N, Bora U (2012) Silk fibroin in tissue engineering. Adv Healthc Mater 1:393–412. https://doi.org/10.1002/adhm.201200097

    Article  CAS  PubMed  Google Scholar 

  18. Sashina ES, Golubikhin AY, Susanin AI (2015) Prospects for producing new biomaterials based on fibroin. Fibre Chem 47:253–259. https://doi.org/10.1007/s10692-016-9675-8

    Article  CAS  Google Scholar 

  19. Züge LCB, Silva VR, Hamerski F et al (2017) Emulsifying properties of sericin obtained from hot water degumming process. J Food Process Eng. https://doi.org/10.1111/jfpe.12267

    Article  Google Scholar 

  20. Arami M, Rahimi S, Mivehie L et al (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106:267–275. https://doi.org/10.1002/app.26492

    Article  CAS  Google Scholar 

  21. Chopra S, Chattopadhyay R, Gulrajani ML (1996) Low stress mechanical properties of silk fabric degummed by different methods. J Text Inst 87:542–553. https://doi.org/10.1080/00405009608631356

    Article  CAS  Google Scholar 

  22. Wang F, Cao TT, Zhang YQ (2015) Effect of silk protein surfactant on silk degumming and its properties. Mater Sci Eng C 55:131–136. https://doi.org/10.1016/j.msec.2015.05.041

    Article  CAS  Google Scholar 

  23. Rajkhowa R, Wang L, Kanwar JR, Wang X (2011) Molecular weight and secondary structure change in eri silk during alkali degumming and powdering. J Appl Polym Sci 119:1339–1347. https://doi.org/10.1002/app.31981

    Article  CAS  Google Scholar 

  24. Teh TKH, Toh SL, Goh JCH (2010) Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomed Mater. https://doi.org/10.1088/1748-6041/5/3/035008

    Article  PubMed  Google Scholar 

  25. Ninpetch U, Tsukada M, Promboon A (2015) Mechanical properties of silk fabric degummed with bromelain. J Eng Fiber Fabr 10:69–78. https://doi.org/10.1177/155892501501000319

    Article  Google Scholar 

  26. Shetty P (2019) Pineapple: potential source of proteolytic enzymes for degumming of raw silk. Mod Concepts Dev Agron 4:. https://doi.org/10.31031/mcda.2019.04.000585

    Article  Google Scholar 

  27. Sumana D, Sudarshan M, Thakur AR, Ray Chaudhuri S (2013) Degumming of raw silk fabric with help of marine extracellular protease. Am J Biochem Biotechnol 9(1):12–18

    Article  Google Scholar 

  28. Sarma I (2015) Degumming of muga cocoon with mycogenic extracellular protease and lipase enzyme—an alternative method for efficient reeling of silk. Adv Appl Sci Res 6:7–16

    CAS  Google Scholar 

  29. Sarma MB, Gogoi SB, Devi D, Goswami B (2012) Degumming of Muga silk fabric by biosurfactant. J Sci Ind Res (India) 71:270–272

    CAS  Google Scholar 

  30. Suwannaphan S, Fufeungsombut E, Promboon A (2017) International Biodeterioration & Biodegradation A serine protease from newly isolated Bacillus sp. for efficient silk degumming, sericin degrading and colour bleaching activities. Int Biodeterior Biodegrad 117:141–149. https://doi.org/10.1016/j.ibiod.2016.12.009

    Article  CAS  Google Scholar 

  31. Gulrajanid ML, Sethi S, Gupta S (1992) Some studies in degumming of silk with organic acids. J Soc Dye Colour 108:79–86. https://doi.org/10.1111/j.1478-4408.1992.tb01420.x

    Article  Google Scholar 

  32. Khan MMR, Tsukada M, Gotoh Y et al (2010) Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour Technol 101:8439–8445. https://doi.org/10.1016/j.biortech.2010.05.100

    Article  CAS  PubMed  Google Scholar 

  33. Dou H, Zuo B (2015) Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J Text Inst 106:311–319. https://doi.org/10.1080/00405000.2014.919065

    Article  CAS  Google Scholar 

  34. Zhang Y, Sun X, Wang X (2011) Synthesis of chelating surfactant and its application in silk degumming. Adv Mater Res 331:245–248. https://doi.org/10.4028/www.scientific.net/AMR.331.245

    Article  CAS  Google Scholar 

  35. Wang F, Zhang YQ (2017) Effects of alkyl polyglycoside (APG) on Bombyx mori silk degumming and the mechanical properties of silk fibroin fibre. Mater Sci Eng C 74:152–158. https://doi.org/10.1016/j.msec.2017.02.015

    Article  CAS  Google Scholar 

  36. Zhou J, Li Z, Yu C (2017) Property of ramie fiber degummed with Fenton reagent. Fibers Polym 18:1891–1897. https://doi.org/10.1007/s12221-017-6489-0

    Article  CAS  Google Scholar 

  37. Zhao ZL, Li WW, Wang F, Zhang YQ (2018) Using of hydrated lime water as a novel degumming agent of silk and sericin recycling from wastewater. J Clean Prod 172:2090–2096. https://doi.org/10.1016/j.jclepro.2017.11.213

    Article  CAS  Google Scholar 

  38. Cao T, Wang Y, Zhang Y (2013) Effect of strongly alkaline electrolyzed water on silk degumming and the physical properties of the fibroin fiber. PloS One. https://doi.org/10.1371/journal.pone.0065654

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deng Y, Shi T, Zhang G, Yi S (2017) The effect of urea on degumming of mulberry silk with papain. DEStech Trans Eng Technol Res. https://doi.org/10.12783/dtetr/icamm2016/7436

    Article  Google Scholar 

  40. Vyas SK, Shukla SR (2016) Degumming of eri silk using ionic liquids and optimization through response surface methodology. J Text Inst 107:1096–1111. https://doi.org/10.1080/00405000.2015.1086196

    Article  CAS  Google Scholar 

  41. Mahmoodi NM, Arami M, Mazaheri F, Rahimi S (2010) Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod 18:146–151. https://doi.org/10.1016/j.jclepro.2009.10.003

    Article  CAS  Google Scholar 

  42. Wang R, Zhu Y, Shi Z et al (2018) Degumming of raw silk via steam treatment. J Clean Prod 203:492–497. https://doi.org/10.1016/j.jclepro.2018.08.286

    Article  CAS  Google Scholar 

  43. Mahmoodi NM, Moghimi F, Arami M, Mazaheri F (2010) Silk degumming using microwave irradiation as an environmentally friendly surface modification method. Fibers Polym 11:234–240. https://doi.org/10.1007/s12221-010-0234-2

    Article  CAS  Google Scholar 

  44. Gupta D, Agrawal A, Chaudhary H et al (2013) Cleaner process for extraction of sericin using infrared. J Clean Prod 52:488–494. https://doi.org/10.1016/j.jclepro.2013.03.016

    Article  CAS  Google Scholar 

  45. Long JJ, Wang HW, Lu TQ et al (2008) Application of low-pressure plasma pretreatment in silk fabric degumming process. Plasma Chem Plasma Process 28:701–713. https://doi.org/10.1007/s11090-008-9153-z

    Article  CAS  Google Scholar 

  46. Shen M, Wang L, Chen F et al (2015) Effect of low-temperature oxygen plasma on the degumming of ramie fabric. J Clean Prod 92:318–326. https://doi.org/10.1016/j.jclepro.2014.12.054

    Article  CAS  Google Scholar 

  47. Xiang W, Quan Q, Ding J, Li K (2011) Study on mulberry silk degumming process with cold-pad-batch using tea sapogenin. Adv Mater Res 233–235:909–914. https://doi.org/10.4028/www.scientific.net/AMR.233-235.909

    Article  CAS  Google Scholar 

  48. Rahman M, Bhowmik A, Das S et al (2020) Green degumming of silk by enzyme extracted from natural sources. J Mater Sci Chem Eng 08:30–40. https://doi.org/10.4236/msce.2020.88003

    Article  CAS  Google Scholar 

  49. Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106:101–112. https://doi.org/10.1016/j.jbiotec.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  50. Kim J, Kwon MY OP-10 Enzymatic Preparation of Silk/Cellulose Blend Fabrics. 43–44

  51. Johnny R, Chinnammal K (2012) Degumming of silk using protease enzyme from Bacillus. Int J Sci Nat 3:51–59

    Google Scholar 

  52. Das D, Das SK, Parhi PK et al (2021) Green strategies in formulating, stabilizing and pipeline transportation of coal water slurry in the framework of WATER-ENERGY NEXUS: a state of the art review. Energy Nexus 4:100025. https://doi.org/10.1016/j.nexus.2021.100025

    Article  Google Scholar 

  53. Das D, Panigrahi S, Senapati PK, Misra PK (2009) Effect of organized assemblies. Part 5: study on the rheology and stabilization of a concentrated coal—water slurry using saponin of the acacia concinna plant. Energy Fuels 23:3217–3226. https://doi.org/10.1021/ef800915y

    Article  CAS  Google Scholar 

  54. Das D, Dash U, Nayak A, Misra PK (2010) Surface engineering of low rank indian coals by starch-based additives for the formulation of concentrated coal–water slurry. Energy Fuels 24:1260–1268. https://doi.org/10.1021/ef900921c

    Article  CAS  Google Scholar 

  55. Routray A, Das D, Parhi PK, Padhy MK (2018) Characterization, stabilization, and study of mechanism of coal–water slurry using Sapindous Mukorossi as an additive. Energy Sources Part A Recover Util Environ Eff 40:2502–2509. https://doi.org/10.1080/15567036.2018.1503755

    Article  CAS  Google Scholar 

  56. Pattanaik S, Parhi PK, Das D, Samal AK (2019) Acacia concinna: A natural dispersant for stabilization and transportation of fly ash-water slurry. J Taiwan Inst Chem Eng 99:193–200. https://doi.org/10.1016/j.jtice.2019.03.020

    Article  CAS  Google Scholar 

  57. Das D, Pattanaik S, Parhi PK et al (2019) Stabilization and rheological behavior of fly ash-water slurry using a natural dispersant in pipeline transportation. ACS Omega 4:21604–21611. https://doi.org/10.1021/acsomega.9b03477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Samal K, Das C, Mohanty K (2017) Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dye Pigment 140:100–108. https://doi.org/10.1016/j.dyepig.2017.01.031

    Article  CAS  Google Scholar 

  59. Dan AK, Bhattacharjee D, Ghosh S et al (2021) Prospective utilization of coal fly ash for making advanced materials. In: Clean Coal Technologies. Springer International Publishing, Cham, pp 511–531

    Chapter  Google Scholar 

  60. Das SK, Dan AK, Behera U et al (2021) A novel approach on leaching study for removal of toxic elements from thermal power plant-based fly ash using natural bio-surfactant. Case Stud Chem Environ Eng 4:100156. https://doi.org/10.1016/j.cscee.2021.100156

    Article  CAS  Google Scholar 

  61. Das D, Mohapatra RK, Belbsir H et al (2020) Combined effect of natural dispersant and a stabilizer in formulation of high concentration coal water slurry: experimental and rheological modeling. J Mol Liq 320:114441. https://doi.org/10.1016/j.molliq.2020.114441

    Article  CAS  Google Scholar 

  62. Das D, Mohapatra RK, Parhi PK et al (2020) Sustainable and efficient route for the regeneration of carbonyl compounds from oximes using aqueous extract of Sapindus laurifolia under microwave radiation. ACS Omega 5:7716–7721. https://doi.org/10.1021/acsomega.0c00774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mukta G (2014) Effect of Reetha and Hinganbet on strength of degummed and dyed silk. Int Res J Sci Eng 2:209–212

    Google Scholar 

  64. Gupta M, Roy A, Banerjee S et al (2015) Bacillus sp. MCC2138: a potential candidate for microbial degumming of Ramie. Int J Fiber Text Res 5:39–43

    CAS  Google Scholar 

  65. Mukhtar H, Ikram-Ul-Haq (2012) Purification and characterization of alkaline protease produced by a mutant strain of Bacillus subtilis. Pakistan J Bot 44:1697–1704

    Google Scholar 

  66. Prathumpai W, Promboon A, Werapan B, Nutaratat P (2020) Pilot-scale protease production by Bacillus sp. C4 for silk degumming processes. J Nat Fibers 00:1–14. https://doi.org/10.1080/15440478.2020.1788482

    Article  CAS  Google Scholar 

  67. Rodbumrer P, Arthan D, Uyen U et al (2012) Functional expression of a Bombyx mori cocoonase: potential application for silk degumming. Acta Biochim Biophys Sin (Shanghai) 44:974–983. https://doi.org/10.1093/abbs/gms090

    Article  CAS  Google Scholar 

  68. Zhang H, Li H, Liu H et al (2019) International Biodeterioration & Biodegradation Degumming raw silk by a halotolerant metalloprotease isolated from metabolites of Vibrio sp. LA-05. Int Biodeterior Biodegrad 142:124–130. https://doi.org/10.1016/j.ibiod.2019.05.009

    Article  CAS  Google Scholar 

  69. Freddi G, Allara G, Candiani G (1996) Degumming of silk fabrics with tartaric acid. J Soc Dye Colour 112:191–195. https://doi.org/10.1111/j.1478-4408.1996.tb01817.x

    Article  CAS  Google Scholar 

  70. Jin HJ, Park J, Karageorgiou V et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241–1247. https://doi.org/10.1002/adfm.200400405

    Article  CAS  Google Scholar 

  71. Chattopadhyay D, Chakraborty A, Chatterjee SM (2017) Studies on degumming of eri silk cocoons. J Text Inst 108:1327–1339. https://doi.org/10.1080/00405000.2016.1247617

    Article  CAS  Google Scholar 

  72. Meng C, Hu J, Yu C, Sun F (2019) Evaluation of the mild Mg(OH)2-AQ aided alkaline oxidation degumming process of ramie fiber at an industrial scale. Ind Crops Prod 137:694–701. https://doi.org/10.1016/j.indcrop.2019.05.077

    Article  CAS  Google Scholar 

  73. Yuksek M (2012) Effect of degumming performed with different type natural soaps and through microwave energy method on the properties of silk fiber. Asian J Chem 24:742–746

    CAS  Google Scholar 

  74. Haggag K, Sayed HE, Allam OG (2007) Degumming of silk using microwave-assisted treatments. J Nat Fibers 4:1–22. https://doi.org/10.1300/J395v04n03_01

    Article  CAS  Google Scholar 

  75. Krishnamurthy K, Khurana HK, Soojin J et al (2008) Infrared heating in food processing: an overview. Compr Rev Food Sci Food Saf 7:2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x

    Article  Google Scholar 

  76. Wang R, Jiang W, li S et al (2012) Application research on infrared drying in silk re-reeling process. Text Res J 82:1329–1336. https://doi.org/10.1177/0040517512438128

    Article  CAS  Google Scholar 

  77. Li R, Ye L, Mai YW (1997) Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Compos Part A Appl Sci Manuf 28:73–86. https://doi.org/10.1016/S1359-835X(96)00097-8

    Article  Google Scholar 

  78. Yip J, Chan K, Sin KM, Lau KS (2002) Low temperature plasma-treated nylon fabrics. J Mater Process Technol 123:5–12. https://doi.org/10.1016/S0924-0136(02)00024-9

    Article  CAS  Google Scholar 

  79. Vallon S, Drévillon B, Poncin-Epaillard F (1997) In situ spectroellipsometry study of the crosslinking of polypropylene by an argon plasma. Appl Surf Sci 108:177–185. https://doi.org/10.1016/S0169-4332(96)00574-0

    Article  CAS  Google Scholar 

  80. Wertheimer MR, Fozza AC, Holländer A (1999) Industrial processing of polymers by low-pressure plasmas: the role of VUV radiation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 151:65–75. https://doi.org/10.1016/S0168-583X(99)00073-7

    Article  CAS  Google Scholar 

  81. Yuan LY, Chen CS, Shyu SS, Lai JY (1992) Plasma surface treatment on carbon fibers. Part 1: morphology and surface analysis of plasma etched fibers. Compos Sci Technol 45:1–7. https://doi.org/10.1016/0266-3538(92)90116-K

    Article  CAS  Google Scholar 

  82. Anand M, Cohen RE, Baddour RF (1981) Surface modification of low density polyethylene in a fluorine gas plasma. Polymer 22:361–371. https://doi.org/10.1016/0032-3861(81)90048-3

    Article  CAS  Google Scholar 

  83. Smiley RJ, Delgass WN (1993) AFM, SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas. J Mater Sci 28:3601–3611. https://doi.org/10.1007/BF01159843

    Article  CAS  Google Scholar 

  84. Kim HJ, Chung DE, Um IC (2013) Effect of processing conditions on the homogeneity of partially degummed silk evaluated by FTIR spectroscopy. Int J Ind Entomol 26:54–60. https://doi.org/10.7852/ijie.2013.26.1.054

    Article  Google Scholar 

  85. Carissimi G, Lozano-Pérez AA, Montalbán MG et al (2019) Revealing the influence of the degumming process in the properties of silk fibroin nanoparticles. Polymers (Basel) 11:1–17. https://doi.org/10.3390/polym11122045

    Article  CAS  Google Scholar 

  86. Bambole V, Yakhmi JV (2016) Tissue engineering: use of electrospinning technique for recreating physiological functions. Elsevier, Amsterdam

    Google Scholar 

  87. Mohammadzadehmoghadam S, Dong Y (2021) Electrospinning of silk fibroin-based nanofibers and their applications in tissue engineering. Elsevier, Amsterdam

    Book  Google Scholar 

  88. Deb P, Deoghare AB, Borah A et al (2018) Scaffold development using biomaterials: a review. Mater Today Proc 5:12909–12919. https://doi.org/10.1016/j.matpr.2018.02.276

    Article  CAS  Google Scholar 

  89. Baptista-Silva S, Borges S, Rita Costa-Pinto A et al (2021) In situ forming silk sericin-based hydrogel: a novel wound healing biomaterial. ACS Biomater Sci Eng 7:1573–1586. https://doi.org/10.1021/acsbiomaterials.0c01745

    Article  CAS  PubMed  Google Scholar 

  90. Liu H, Ge Z, Wang Y et al (2007) Modification of sericin-free silk fibers for ligament tissue engineering application. J Biomed Mater Res - Part B Appl Biomater 82:129–138. https://doi.org/10.1002/jbm.b.30714

    Article  CAS  Google Scholar 

  91. Bandyopadhyay A, Chowdhury SK, Dey S et al (2019) Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. J Indian Inst Sci 99:445–487. https://doi.org/10.1007/s41745-019-00114-y

    Article  Google Scholar 

  92. Ma X, Wu G, Dai F et al (2021) Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr Polym 251:117058. https://doi.org/10.1016/j.carbpol.2020.117058

    Article  CAS  PubMed  Google Scholar 

  93. Allardyce BJ, Rajkhowa R, Dilley RJ et al (2016) The impact of degumming conditions on the properties of silk films for biomedical applications. Text Res J 86:275–287. https://doi.org/10.1177/0040517515586166

    Article  CAS  Google Scholar 

  94. Li ZH, Ji SC, Wang YZ et al (2013) Silk fibroin-based scaffolds for tissue engineering. Front Mater Sci 7:237–247. https://doi.org/10.1007/s11706-013-0214-8

    Article  Google Scholar 

  95. Yang Y, Ding F, Wu J et al (2007) Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 28:5526–5535. https://doi.org/10.1016/j.biomaterials.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  96. Wang CY, Zhang KH, Fan CY et al (2011) Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration. Acta Biomater 7:634–643. https://doi.org/10.1016/j.actbio.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  97. Wei Y, Gong K, Zheng Z et al (2011) Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 22:1947–1964. https://doi.org/10.1007/s10856-011-4370-z

    Article  CAS  PubMed  Google Scholar 

  98. Huang W, Begum R, Barber T et al (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33:59–71. https://doi.org/10.1016/j.biomaterials.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  99. Park YR, Ju HW, Lee JM et al (2016) Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int J Biol Macromol 93:1567–1574. https://doi.org/10.1016/j.ijbiomac.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y, Wang X, Shi J et al (2016) A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci Rep 6:1–13. https://doi.org/10.1038/srep39477

    Article  CAS  Google Scholar 

  101. Kasoju N, Bora U (2012) Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater. https://doi.org/10.1088/1748-6041/7/4/045004

    Article  PubMed  Google Scholar 

  102. Janani G, Nandi SK, Mandal BB (2018) Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Mater 67:167–182

    CAS  Google Scholar 

  103. Font Tellado S, Bonani W, Balmayor ER et al (2017) Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone. Tissue Eng 23:859–872

    Article  CAS  Google Scholar 

  104. Criscenti G, Longoni A, Di Luca A et al (2016) Triphasic scaffolds for the regeneration of the bone-ligament interface. Biofabrication 8:15009. https://doi.org/10.1088/1758-5090/8/1/015009

    Article  CAS  Google Scholar 

  105. Sahi AK, Varshney N, Poddar S et al (2021) Fabrication and characterization of silk fibroin-based nanofibrous scaffolds supplemented with gelatin for corneal tissue engineering. Cells Tissues Organs 210:173–194. https://doi.org/10.1159/000515946

    Article  CAS  PubMed  Google Scholar 

  106. Guan L, Ge H, Tang X et al (2013) Use of a silk fibroin-chitosan scaffold to construct a tissue-engineered corneal stroma. Cells Tissues Organs 198:190–197. https://doi.org/10.1159/000355944

    Article  CAS  PubMed  Google Scholar 

  107. Suzuki S, Dawson R, Chirila T et al (2015) Treatment of silk fibroin with poly(ethylene glycol) for the enhancement of corneal epithelial cell growth. J Funct Biomater 6:345–366. https://doi.org/10.3390/jfb6020345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ramachandran C, Gupta P, Hazra S, Mandal BB (2020) In vitro culture of human corneal endothelium on non-mulberry silk fibroin films for tissue regeneration. Transl Vis Sci Technol 9:1–15. https://doi.org/10.1167/tvst.9.4.12

    Article  Google Scholar 

  109. Li Y, Yang Y, Yang L et al (2017) Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther 8:1–19. https://doi.org/10.1186/s13287-017-0707-y

    Article  CAS  Google Scholar 

  110. Narayanan N, Jiang C, Wang C et al (2020) Harnessing fiber diameter-dependent effects of myoblasts toward biomimetic scaffold-based skeletal muscle regeneration. Front Bioeng Biotechnol 8:1–12. https://doi.org/10.3389/fbioe.2020.00203

    Article  Google Scholar 

  111. Du M, Gu J, Wang J et al (2019) Silk fibroin/poly(L–lactic acid–co–ε–caprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Exp Ther Med. https://doi.org/10.3892/etm.2019.7405

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yin A, Bowlin GL, Luo R et al (2016) Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. Regen Biomater 3:239–245. https://doi.org/10.1093/rb/rbw026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lu Q, Hu K, Feng QL, Cui F (2009) Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold. Mater Sci Eng C 29:2239–2245. https://doi.org/10.1016/j.msec.2009.05.014

    Article  CAS  Google Scholar 

  114. Chen JP, Chen SH, Lai GJ (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7:1–11. https://doi.org/10.1186/1556-276X-7-170

    Article  CAS  Google Scholar 

  115. Jiang J, Hao W, Li Y et al (2013) Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Biotechnol Lett 35:657–661. https://doi.org/10.1007/s10529-012-1121-2

    Article  CAS  PubMed  Google Scholar 

  116. Melke J, Midha S, Ghosh S et al (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16. https://doi.org/10.1016/j.actbio.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  117. Li C, Vepari C, Jin HJ et al (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124. https://doi.org/10.1016/j.biomaterials.2006.01.022

    Article  CAS  PubMed  Google Scholar 

  118. Jiang S, Yu Z, Zhang L et al (2021) Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater 8:1–9. https://doi.org/10.1093/rb/rbab028

    Article  CAS  Google Scholar 

  119. Yang JW, Zhang YF, Sun ZY et al (2015) Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl 30:221–229. https://doi.org/10.1177/0885328215577296

    Article  CAS  PubMed  Google Scholar 

  120. Zhang W, Liu H, Yang W et al (2019) Hydroxyapatite/silk fibroin composite biomimetic scaffold for dental pulp repair. Bioinspired Biomim Nanobiomaterials 8:231–238. https://doi.org/10.1680/jbibn.18.00050

    Article  Google Scholar 

  121. Wei J, Sun XQ, Hou BX (2021) Evaluation of silk fibroin-RGD-stem cell factor scaffold effect on adhesion, migration, and proliferation of stem cells of Apical Papilla. Stem Cells Int. https://doi.org/10.1155/2021/6612324

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim JS, Choi J, Ki CS, Lee KH (2021) 3D silk fiber construct embedded dual-layer PEG hydrogel for articular cartilage repair—in vitro assessment. Front Bioeng Biotechnol 9:1–13. https://doi.org/10.3389/fbioe.2021.653509

    Article  Google Scholar 

  123. Silva SS, Motta A, Rodrigues MT et al (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromol 9:2764–2774. https://doi.org/10.1021/bm800874q

    Article  CAS  Google Scholar 

  124. Marei HE, Hasan A, Rizzi R et al (2018) Potential of stem cell-based therapy for ischemic stroke. Front Neurol. https://doi.org/10.3389/fneur.2018.00034

    Article  PubMed  PubMed Central  Google Scholar 

  125. Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25:1–21. https://doi.org/10.1186/s12929-018-0491-8

    Article  CAS  Google Scholar 

  126. Ohtake Y, Sami A, Jiang X et al (2019) Promoting axon regeneration in adult CNS by targeting liver kinase B1. Mol Ther 27:102–117. https://doi.org/10.1016/j.ymthe.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  127. Boni R, Ali A, Giteru SG et al (2020) Silk fibroin nanoscaffolds for neural tissue engineering. J Mater Sci Mater Med 31:. https://doi.org/10.1007/s10856-020-06422-5

    Article  PubMed  Google Scholar 

  128. Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A et al (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53. https://doi.org/10.1016/j.addr.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  129. Vidya M, Rajagopal S (2021) Silk fibroin: a promising tool for wound healing and skin regeneration. Int J Polym Sci. https://doi.org/10.1155/2021/9069924

    Article  Google Scholar 

  130. Hodgkinson T, Yuan XF, Bayat A (2014) Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. J Tissue Eng. https://doi.org/10.1177/2041731414551661

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32. https://doi.org/10.1016/j.actbio.2015.11.034

    Article  CAS  PubMed  Google Scholar 

  132. Park YR, Sultan MT, Park HJ et al (2018) NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater 67:183–195. https://doi.org/10.1016/j.actbio.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  133. Asahara H, Inui M, Lotz MK (2017) Tendons and ligaments: connecting developmental biology to musculoskeletal disease pathogenesis. J Bone Miner Res 32:1773–1782. https://doi.org/10.1002/jbmr.3199

    Article  PubMed  Google Scholar 

  134. Naghashzargar E, Farè S, Catto V et al (2015) Nano/micro hybrid scaffold of PCL or P3Hb nanofibers combined with silk fibroin for tendon and ligament tissue engineering. J Appl Biomater Funct Mater 13:e156–e168. https://doi.org/10.5301/jabfm.5000216

    Article  CAS  PubMed  Google Scholar 

  135. Lu K, Chen X, Tang H et al (2020) Bionic silk fibroin film induces morphological changes and differentiation of tendon stem/progenitor cells. Appl Bionics Biomech 2020:. https://doi.org/10.1155/2020/8865841

    Article  Google Scholar 

  136. Harkin DG, George KA, Madden PW et al (2011) Silk fibroin in ocular tissue reconstruction. Biomaterials 32:2445–2458. https://doi.org/10.1016/j.biomaterials.2010.12.041

    Article  CAS  PubMed  Google Scholar 

  137. Patra C, Talukdar S, Novoyatleva T et al (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33:2673–2680. https://doi.org/10.1016/j.biomaterials.2011.12.036

    Article  CAS  PubMed  Google Scholar 

  138. Chaturvedi V, Naskar D, Kinnear BF et al (2017) Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. J Tissue Eng Regen Med 11:3178–3192. https://doi.org/10.1002/term.2227

    Article  CAS  PubMed  Google Scholar 

  139. Bhattacharjee P, Kundu B, Naskar D et al (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17. https://doi.org/10.1016/j.actbio.2017.09.027

    Article  CAS  PubMed  Google Scholar 

  140. Choi JH, Kim DK, Song JE et al (2018) Silk fibroin-based scaffold for bone tissue engineering. Adv Exp Med Biol 1077:371–387. https://doi.org/10.1007/978-981-13-0947-2_20

    Article  CAS  PubMed  Google Scholar 

  141. Rombouts C, Giraud T, Jeanneau C, About I (2017) Pulp vascularization during tooth development, regeneration, and therapy. J Dent Res 96:137–144. https://doi.org/10.1177/0022034516671688

    Article  CAS  PubMed  Google Scholar 

  142. Yang Q, Teng BH, Wang LN et al (2017) Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine 12:6721–6733. https://doi.org/10.2147/IJN.S141888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rosadi I, Karina K, Rosliana I et al (2019) In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold. Stem Cell Res Ther 10:1–15. https://doi.org/10.1186/s13287-019-1443-2

    Article  CAS  Google Scholar 

  144. Sakai S, Yoshii A, Sakurai S et al (2020) Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Mater Today Bio. https://doi.org/10.1016/j.mtbio.2020.100078

    Article  PubMed  PubMed Central  Google Scholar 

  145. Costa JB, Silva-Correia J, Oliveira JM, Reis RL (2017) Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv Healthc Mater 6:1–8. https://doi.org/10.1002/adhm.201701021

    Article  CAS  Google Scholar 

  146. Oliveira JM (2020) Current and future trends of silk fibroin-based bioinks in 3D printing. J 3D Print Med 4:69–73. https://doi.org/10.2217/3dp-2020-0005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful and do acknowledge to their respective organization for extending adequate resources and facility support.

Funding

There is no financial funding component associated for investigation of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debadutta Das or Pankaj Kumar Parhi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human and/or Animal Participants

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, B., Dan, A.K., Sengupta, A. et al. Extraction of Silk Fibroin with Several Sericin Removal Processes and its Importance in Tissue Engineering: A Review. J Polym Environ 30, 2222–2253 (2022). https://doi.org/10.1007/s10924-022-02381-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02381-w

Keywords

Navigation