Skip to main content
Log in

Novel Pretreatment Performance Evaluation for Cellulose Nanofibrils Extraction from Ficus natalensis Barkcloth

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recently, nanosized cellulose materials extraction is extensively interesting from the sources of sustainable materials. Cellulose nanofibrils (CNF) extraction through green bio-based materials featured as promising interest in the field of science. In this study, dimethyl sulfoxide (DMSO) was applied to examine its effectiveness in pretreating the Ficus natalensis barkcloth cellulose (FNBC) for CNF production before 2,2,6,6,-tetramethylpiperidine-1-oxyl (TEMPO) oxidation. The pretreatment performance of DMSO was evaluated based on the structural and morphological changes. DMSO pretreated FNBC attained the most dramatic morphological changes as compared to untreated cellulose samples. The results of the scanning electron microscope (SEM) and transmission electron microscope (TEM) shows that there is an extensive structural disruption of FNBC during the pretreatment process, which could be because of outstanding ability to eliminate non-cellulosic materials and amorphous regions from the FNBC, confirmed by the X-ray diffractometry (XRD) showing higher crystallinity values, as well as higher thermal stabilities values of pretreated FNBC samples, were also noted. Overall, this study revealed a tremendously effective and pioneer pretreatment method for fractionating FNBC, to stimulate the successive extraction of cellulose nanofibrils. Furthermore, based on the cellulose and CNF characterizations, this study showed that F. natalensis barkcloth could be considered as an alternative source of cellulose for potential value-added industrial applications such as the food industry, paper making, and biomedicines.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Huang, Y. Zhao, S. Kuga, M. Wu, and Y. J. N. Huang, "A versatile method for producing functionalized cellulose nanofibers and their application," vol. 8, no. 6, pp. 3753–3759, 2016.

  2. Frone AN, Chiulan I, Panaitescu DM, Nicolae CA, Ghiurea M, Galan A-MJML (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Matteer Lett. 194:160–163

    Article  CAS  Google Scholar 

  3. K. Ramanaiah, A. R. Prasad, K. H. C. J. M. Reddy, and Design, "Mechanical, thermophysical and fire properties of sansevieria fiber-reinforced polyester composites," Mater Design. 49, 986–991, 2013.

  4. E. A. Hassan, M. L. Hassan, R. E. Abou-Zeid, N. A. J. I. C. El-Wakil, and Products, Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Ind Crops Prod. 93, 219–226, 2016.

  5. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2008) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165

    Article  Google Scholar 

  6. Saito T, Shibata I, Isogai A, Suguri N, Sumikawa N (2005) Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation. Carbohyd Polym 61(4):414–419

    Article  CAS  Google Scholar 

  7. Li Y et al (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018

    Article  CAS  Google Scholar 

  8. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chemistry & Engineering 6(3):2807–2828

    Article  CAS  Google Scholar 

  9. Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9(1):2479–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sirviö JA, Visanko MJJOMCA (2017) "Anionic wood nanofibers produced from unbleached mechanical pulp by highly efficient chemical modification. Carbohydrate Poly 5:21828–21835

    Google Scholar 

  11. Tabar IB, Zhang X, Youngblood JP, Mosier NSJCP (2017) Production of cellulose nanofibers using phenolic enhanced surface oxidation. Carbohydrate Poly 174:120–127

    Article  Google Scholar 

  12. Ebringerová A, Heinze TJMRC (2000) Xylan and xylan derivatives–biopolymers with valuable properties, 1 Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  13. F. Xu et al., "Fractional separation of hemicelluloses and lignin in high yield and purity from mild ball-milled Periploca sepium," vol. 43, no. 11–12, pp. 3351–3375, 2008.

  14. Sun R, Tomkinson JJIJOPA (2003) Fractional isolation and spectroscopic characterization of sago starch. Int J Poly Anal Char. 8:29–46

    Article  CAS  Google Scholar 

  15. Pramanik MM, Rastogi N (2016) Visible light catalyzed methylsulfoxidation of (het) aryl diazonium salts using DMSO. Chem Commun 52(55):8557–8560

    Article  CAS  Google Scholar 

  16. Höije A, Gröndahl M, Tømmeraas K, Gatenholm PJCP (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydrate Poly 61:266–275

    Article  Google Scholar 

  17. Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J Ethnopharmacol 134(3):565–583

    Article  CAS  PubMed  Google Scholar 

  18. Serrato A, Ibarra-Manríquez G, Oyama K (2004) Biogeography and conservation of the genus Ficus (Moraceae) in Mexico. J Biogeogr 31(3):475–485

    Article  Google Scholar 

  19. Awolola GV, Chenia H, Baijnath H, Koorbanally NA (2017) Anti-adhesion potential of non-polar compounds and extracts from Ficus natalensis. Rev Bras 27(5):599–602

    CAS  Google Scholar 

  20. Y. Kim and V. Chalivendra, "Handbook of Natural Fibres," Natural fibre composites (NFCs) for construction and automotive industries, pp. 469–498, 2020.

  21. A. Hutchings, Zulu medicinal plants: An inventory. University of Natal press, 1996.

  22. Rwawiire S, Tomkova B, Militky J, Jabbar A, Kale BM (2015) Development of a biocomposite based on green epoxy polymer and natural cellulose fabric (bark cloth) for automotive instrument panel applications. Compos B Eng 81:149–157

    Article  CAS  Google Scholar 

  23. D. Cousins and M. A. J. A. S. M. Huffman (2002) Medicinal properties in the diet of gorillas: an ethno-pharmacological evaluation, 23, 65–89.

  24. Rwawiire S, Tomkova B, Militky J, Hes L, Kale BM (2017) Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Appl Acoust 116:177–183

    Article  Google Scholar 

  25. Rwawiire S, Tomkova B, Wiener J, Militky J (2016) Effect of enzyme and plasma treatments of bark cloth from Ficus natalensis: morphology and thermal behavior. J Textile Institute 107(5):663–671

    Article  CAS  Google Scholar 

  26. Rwawiire S, Luggya GW, Tomkova B (2013) Morphology, thermal, and mechanical characterization of bark cloth from Ficus natalensis. ISRN Textiles 2013:1–8

    Article  Google Scholar 

  27. Mugaanire IT, Wang H, Sun J (2019) Fibrous microcrystalline cellulose from Ficus natalensis barkcloth. European J Wood Wood Products 77(3):483–486

    Article  CAS  Google Scholar 

  28. A. Farooq, S. Jiang, A. Farooq, M. A. Naeem, A. Ahmad, and L. Liu (2019) Structure and properties of high quality natural cellulose nano fibrils from a novel material Ficus natalensis barkcloth. Journal of Industrial Textiles, p. 1528083719887533.

  29. S. Rwawiire, N. Catherine, K. S. Baker, and G. Davis (2012) Processing of natural fiber textile from Ficus natalensis and Antiaris toxicaria," in Proceedings of the 2nd International Symposium on Sustainable Development through Research in Natural Textile Fibers, Textile Products, Trade and Marketing.

  30. L. Costa, A. F. Fonseca, F. V. Pereira, and J. I. J. C. C. T. Druzian (2015) Extraction and characterization of cellulose nanocrystals from corn stover. 49, 127–133.

  31. Shaheen TI, Emam HE (2018) Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. Int J Biol Macromol 107:1599–1606

    Article  CAS  PubMed  Google Scholar 

  32. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164

    Article  CAS  Google Scholar 

  33. Adeeyo O, Oresegun OM, Oladimeji TE (2015) Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res (AJER) 4(4):14–19

    Google Scholar 

  34. Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  35. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5(5):1983–1989

    Article  CAS  Google Scholar 

  36. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohyd Polym 61(2):183–190

    Article  CAS  Google Scholar 

  37. Das K et al (2010) Physicomechanical and thermal properties of jute-nanofiber-reinforced biocopolyester composites. Ind Eng Chem Res 49(6):2775–2782

    Article  CAS  Google Scholar 

  38. Penjumras P, Rahman RBA, Talib RA, Abdan KJA, Procedia AS (2014) Extraction and characterization of cellulose from durian rind. Agri Agri Sci Procedia. 2:237–243

    Google Scholar 

  39. Okita Y, Fujisawa S, Saito T, Isogai A (2010) TEMPO-oxidized cellulose nanofibrils dispersed in organic solvents. Biomacromol 12(2):518–522

    Article  Google Scholar 

  40. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99

    Article  CAS  Google Scholar 

  41. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  PubMed  Google Scholar 

  42. Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohyd Polym 99:74–83

    Article  CAS  Google Scholar 

  43. Miao X, Lin J, Tian F, Li X, Bian F, Wang J (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohyd Polym 136:841–850

    Article  CAS  Google Scholar 

  44. Haafiz MM, Hassan A, Zakaria Z, Inuwa I (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125

    Article  CAS  Google Scholar 

  45. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508

    Article  CAS  Google Scholar 

  46. Zhai L, Kim HC, Kim JW, Choi ES, Kim J (2018) Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohyd Polym 191:65–70

    Article  Google Scholar 

  47. Kim H-S, Kim S, Kim H-J, Yang H-S (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451(1–2):181–188

    Article  CAS  Google Scholar 

  48. Spinella S et al (2016) Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustainable Chemistry & Engineering 4(3):1538–1550

    Article  CAS  Google Scholar 

  49. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  50. B. Deepa et al., "Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion," vol. 102, no. 2, pp. 1988–1997, 2011.

  51. Ouajai S, Shanks RJPD (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Poly Degradation Stability. 89:327–335

    Article  CAS  Google Scholar 

  52. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai AJB (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165

    Article  CAS  Google Scholar 

  53. Jakob H, Fratzl P, Tschegg S (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Picea abies. J Struct Biol 113(1):13–22

    Article  Google Scholar 

  54. De Nooy A, Besemer AC, Van Bekkum H, Van Dijk J, Smit J (1996) TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules 29(20):6541–6547

    Article  Google Scholar 

  55. Ye W, Liu L, Wang Z, Yu J, Fan Y (2019) Investigation of pretreatment methods for improving TEMPO-mediated oxidation and nanofibrillation efficiency of α-chitin. ACS Sustain Chem Eng 7(24):19463–19473

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to mention the financial support for the research, authorship, and/or publication of this article

Funding

The work was supported by “National Key R&D Program of China (2018YFC2000900)” and “Suzhou Science and Technology Project (ZXL2018134)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, A., Li, M., Alasood, A. et al. Novel Pretreatment Performance Evaluation for Cellulose Nanofibrils Extraction from Ficus natalensis Barkcloth. J Polym Environ 30, 1547–1559 (2022). https://doi.org/10.1007/s10924-021-02297-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02297-x

Keywords

Navigation