Skip to main content
Log in

Triple Roles of Thermoplastic Polyurethane in Toughening, Accelerating and Enhancing Self-healing Performance of Thermo-reversible Epoxy Resins

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cracks in polymers can be healed by endowing materials with self-healing performance. Cracks in epoxy resins containing thermo-reversible Diels–Alder bonds (EP-DA) can be self-healed via different heat treatments. However, EP-DA exhibits the disadvantages of brittleness and poor impact resistance yet as that existed in the common epoxy resins, and which limits the application of thermo-reversible self-healing epoxy resins. Herein, thermoplastic polyurethane (TPU) was introduced into EP-DA for the purpose of reducing the brittleness and improving the impact resistance of EP-DA. Meanwhile, it was expected that the self-healing performance of EP-DA could not be affected evidently. Results showed that the impact resistance of EP-DA had been improved greatly as expected upon TPU modification. More importantly, instead of affecting the self-healing performance of EP-DA, the self-healing speed of EP-DA was accelerated evidently by the incorporation of TPU. On the other hand, the healing efficiency of EP-DA was also enhanced markedly. In fact, TPU-modified EP-DA was repaired by dual actions of thermo-reversible DA reaction and thermal movement of thermoplastic polymer chains. In addition, TPU-modified EP-DA could also be healed for many damage-repair cycles. Therefore, thermoplastic polyurethane played a triple role as toughening, accelerating and enhancing self-healing performance of thermo-reversible epoxy resins.

Graphic Abstract

Thermoplastic polyurethane (TPU) was introduced into thermo-reversible self-healing epoxy resins (EP-DA) successfully. As a result, the brittleness was reduced and the impact resistance of EP-DA was improved greatly. What’s more, instead of affecting the self-healing performance of EP-DA, the self-healing speed of EP-DA was accelerated evidently while the self-healing efficiency of EP-DA was enhanced markedly. Therefore, TPU played a triple role as toughening, accelerating and enhancing self-healing performance of thermo-reversible epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Russell BK, Takeda S, Ward C et al (2019) React Funct Polym 144:104353

    Article  Google Scholar 

  2. Kocaman S, Ahmetli G (2020) J Polym Environ 28:1190

    Article  CAS  Google Scholar 

  3. Sarkar S, Kim B (2016) Polym Compos 39:636

    Article  Google Scholar 

  4. Feng LB, Yu ZY, Bian YH et al (2017) Polymer 124:48

    Article  CAS  Google Scholar 

  5. He ZL, Jiang S, An N (2019) J Mater Sci 54:8262

    Article  CAS  Google Scholar 

  6. Feng LB, Bian YH, Chai CS et al (2020) J Polym Environ 28:647

    Article  CAS  Google Scholar 

  7. Yang SW, Du XS, Du ZL et al (2020) Polymer 190:122219

    Article  Google Scholar 

  8. An SY, Noh SM, Nam JH et al (2015) Macromol Rapid Commun 36:1255

    Article  CAS  Google Scholar 

  9. Davis DA, Hamilton A, Yang JL et al (2009) Nature 459:68

    Article  CAS  Google Scholar 

  10. Garcia-Jimeno S, Cano-Sarabia M, Mejias N et al (2015) J Mater Chem A 3:17966

    Article  CAS  Google Scholar 

  11. Chen QM, Yu XW, Pei ZQ et al (2017) Chem Sci 8:724

    Article  CAS  Google Scholar 

  12. Lu YX, Guan Z (2012) J Am Chem Soc 134:14226

    Article  CAS  Google Scholar 

  13. Kim S, Jeon H, Shin S et al (2018) Adv Mater 30:1705145

    Article  Google Scholar 

  14. Montarnal D, Tournilhac F, Hidalgo M et al (2009) J Am Chem Soc 131:7966

    Article  CAS  Google Scholar 

  15. Thakur VK, Kessler MR et al (2015) Polymer 69:369

    Article  CAS  Google Scholar 

  16. Shi Y, Wang M, Ma C et al (2015) Nano Lett 15:6276

    Article  CAS  Google Scholar 

  17. Jo YY, Lee AS, Baek KY et al (2016) Polymer 108:58

    Article  Google Scholar 

  18. Feng LB, Yu ZY, Bian YH et al (2018) Constr Build Mater 186:1212

    Article  CAS  Google Scholar 

  19. Postiglione G, Turri S, Levi M (2015) Prog Org Coat 78:526

    Article  CAS  Google Scholar 

  20. Duval A, Couture G, Caillol S et al (2017) ACS Sustain Chem Eng 5:1199

    Article  CAS  Google Scholar 

  21. Henderson JR, Chesterman JP, Parvez M et al (2010) J Org Chem 75:988

    Article  CAS  Google Scholar 

  22. Samaneh S, Morteza A, Bahram R (2019) J Ind Eng Chem 75:271

    Article  Google Scholar 

  23. Ma SQ, Liu WQ, Hu CH (2010) Macromol Res 18:392

    Article  CAS  Google Scholar 

  24. He S, Shi K, Bai J et al (2001) Polymer 42:9641

    Article  CAS  Google Scholar 

  25. Bakar M, Duk R, Przybylek M et al (2009) J Reinf Plast Compos 28:2107

    Article  CAS  Google Scholar 

  26. Gui D, Xue G, Hao J et al (2014) Polym Eng Sci 54:1704

    Article  CAS  Google Scholar 

  27. Chen TH, Li HS, Gao Y et al (1998) J Appl Polym Sci 69:887

    Article  CAS  Google Scholar 

  28. Bakar M, Kostrzewa M, Pawelec Z (2014) J Thermoplast Compos 27:620

    Article  Google Scholar 

  29. Zhao HW, Feng LB, Shi XT et al (2018) Acta Polym Sin 3:395

    Google Scholar 

  30. Chen SB, Wang QH, Wang TM (2013) J Reinf Plast Compos 32:1136

    Article  Google Scholar 

  31. Ho T, Wang C (2015) J Appl Polym Sci 74:1905

    Article  Google Scholar 

  32. Scheltjens G, Diaz MM, Brancart J et al (2013) React Funct Polym 73:413

    Article  CAS  Google Scholar 

  33. Grenier-Loustalot MJ, Cunha JD (1998) Eur Polym J 34(1998):95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 51463010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libang Feng.

Ethics declarations

Conflict of interest

The authors claim there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., He, X., Zhang, Y. et al. Triple Roles of Thermoplastic Polyurethane in Toughening, Accelerating and Enhancing Self-healing Performance of Thermo-reversible Epoxy Resins. J Polym Environ 29, 829–836 (2021). https://doi.org/10.1007/s10924-020-01923-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01923-4

Keywords

Navigation