Skip to main content
Log in

Packaging Film of PP/LDPE/PLA/Clay Composite: Physical, Barrier and Degradable Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This work sought to improve the properties of polypropylene (PP) for single layer film application by incorporating low density polyethylene (LDPE), poly(lactic acid) (PLA) and montmorillonite (MMT). The addition of LDPE in PP improved the elongation at break and tear strength. The PP/LDPE blend at a 80:20 (w/w) ratio was selected for blending with PLA and MMT and the PP/LDPE/PLA/MMT composite showed an increased tensile modulus, while the elongation at break decreased, with increasing PLA and MMT contents. The morphological structure of the respective nanocomposites was examined using X-ray diffraction, transmission electron microscopy and scanning electron microscopy analyses. For the barrier properties, the incorporation of PLA and MMT in PP/LDPE blend tended to dramatically decrease the oxygen permeability but slightly increase the water vapor permeability. Moreover, the PP/LDPE/PLA/MMT composite as a new effective film decreased the tomato loss weight during low temperature storage (15–20 °C) compared to the PP film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Feldman D (2001) Polymer barrier films. J Polym Environ 9:49–55

    Article  CAS  Google Scholar 

  2. Devesh T (2002) Practical guide to polypropylene. First Published, United Kingdom

    Google Scholar 

  3. Cormelia V, Mihaela P (2005) Practical guide to polyethylene. iSmithers Rapra Publishing, Shawbury

    Google Scholar 

  4. Kadhim LF, Kadhim ZF (2017) Studying the properties of PP/LDPE polymer blend. Eng Sci 25:193–201

    Google Scholar 

  5. Mofokeng TG, Ojijo V, Ray SS (2016) Influence of blend ratio on the morphology, mechanical, thermal, and rheological properties of PP/LDPE blends. Macromol Mater Eng 302:1191–1201

    Article  Google Scholar 

  6. Chang AC, Tau L, Hiltner A, Baer E (2002) Structure of blown film from blends of polyethylene and high melt strength polypropylene. Polymer 43:4923–4933

    Article  CAS  Google Scholar 

  7. Abdel-Hamid IM (2010) Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater Des 31:918–929

    Article  Google Scholar 

  8. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) On oxygen gas permeability of PP/PLA/clay nanocomposites: a molecular dynamic simulation approach. Polym Test 45:139–151

    Article  CAS  Google Scholar 

  9. Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/poly(lactic acid for medical packaging application: physichemical, thermal, mechanical and barrier properties. Energy Proc 56:201–210

    Article  CAS  Google Scholar 

  10. Ebadi-Dehaghani H, Khonakdar HA, Barikani M, Jafari SH (2015) Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Compos B - Eng 69:133–144

    Article  CAS  Google Scholar 

  11. Pannirselvan M, Genovese A, Jollands MC, Bhattacharya SN, Shanks RA (2008) Oxygen barrier property of polypropylene-polyether treated clay nanocomposite. Express Polym Lett 2:429–439

    Article  Google Scholar 

  12. Girdthep S, Worajittiphon P, Molloy R, Lumyong S, Leejarkpai T, Punyodom W (2014) Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: a route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer 55:6776–6788

    Article  CAS  Google Scholar 

  13. Espinosa KR, Castillo LA, Barbosa SE (2016) Blown nanocomposite films from polypropylene and talc, Influence of talc nanoparticles on biaxial properties. Mater Des 111:25–35

    Article  CAS  Google Scholar 

  14. Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends. J Polym Environ 12:1–6

    Article  CAS  Google Scholar 

  15. Kasai D, Chougale R, Masti S, Chalannavar R, Malabadi RB, ·Gani R, Gouripur G (2019) An investigation into the influence of filler piper nigrum leaves extract on physicochemical and antimicrobial properties of chitosan/poly(vinyl alcohol) blend films. J Polym Environ 27:472–488

    Article  CAS  Google Scholar 

  16. Nouri M, Morshedian J, Rabbani A, Ghasemi I, Ebrahimi M (2006) Investigation of LLDPE/LDPE blown films by response surface methodology. Iran Polym J 15(2):155–162

    CAS  Google Scholar 

  17. Chang AC, Chum SP, Hiltner A, Baer E (2002) Mechanisms of ductile tear in blown film from blends of polyethylene and high melt strength polypropylene. Polymer 43:6515–6526

    Article  Google Scholar 

  18. Kodgire P, Kalgaonkar R, Hambir S, Bulakh N, Jog JP (2001) PP/Clay nanocomposites: effect of clay treatment on morphology and dynamic mechanical properties. J Appl Polym Sci 81:1786–1792

    Article  CAS  Google Scholar 

  19. Tabatabaei SH, Ajji A (2012) Crystal structure and orientation of uniaxially and biaxially oriented PLA and PP nanoclay composite films. J Appl Polym Sci 124:4854–4863

    CAS  Google Scholar 

  20. Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polm Sci 15(6):909–948

    Article  CAS  Google Scholar 

  21. Fan Y, Lou JJ, Jamali J, Lu YC, Wood JT (2017) Effect of clay dispersion on the nonisothermal and isothermal crystallization behaviors of polyethylene composites. Polym Plast Technol Eng 56(15):1646–1656

    Article  CAS  Google Scholar 

  22. Pivasaart S, Kordsaard J, Pivsaart W, Wongpajan R, Ocharoen N, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Proc 89:353–360

    Article  Google Scholar 

  23. Kim HS, Kim HJ (2013) Miscibility and performance evaluation of natural-flour-filled PP/PBS and PP/PLA bio-composite. Fiber Polym 14(4):793–803

    Article  Google Scholar 

  24. Jariyakulsith P (2017) Mechanical properties of PLA/PP blended utilizing compatibilizer, Chulalongkorn University

  25. Sui G, Jing M, Zhao J, Wang K, Zhang Q, Fu QA (2018) Comparison study of high shear force and compatibilizer on the phase morphologies and properties of polypropylene/polylactide (PP/PLA) blends. Polymer 154:119–127

    Article  CAS  Google Scholar 

  26. Dong Y, Bhattacharyya D (2012) Investigation on the competing effects of clay dispersion and matrix plasticisation for polypropylene/clay nanocomposites. Part I: morphology and mechanical properties. J Mater Sci 47:3900–3912

    Article  CAS  Google Scholar 

  27. Garca-López D, Picazo O, Merino JC. Pastor JM (2003) Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39:945–950

    Article  Google Scholar 

  28. Girdthep S, Worajittiphon P, Leejarkpai T, Molloy R, Punyodom W (2016) Effect of silver-loaded kaolinite on real ageing, hydrolytic degradation, and biodegradation of composite blown films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate). Eur Polym J 82:244–259

    Article  CAS  Google Scholar 

  29. Duan Z (2013) Water vapour permeability of bio-based polymers. Loughborough University, East Midlands

    Google Scholar 

  30. Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86(2):691–699

    Article  CAS  Google Scholar 

  31. Sahoo NR, Bal LM, Pal US, Sahoo D (2015) Effect of packaging conditions on quality and shelf-life of fresh pointed gourd (Trichosanthes dioica Roxb.) during storage. Food Packaging Shelf 5:56–62

    Article  Google Scholar 

  32. Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2018) Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: physical and morphological properties. Polym Compos 38:2841–2851

    Article  Google Scholar 

  33. Klungsuwan P, Jarerat A, Poompradub S (2013) Mechanical properties and biodegradability of cuttlebone/NR composites. J Polym Environ 21:766–779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the IRPC Public Company Limited and the Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University for material and instrument support. We would like to thank Dr. Robert Butcher for proof reading the article and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript and contributed equally. Conceptualization: PP, SM. Methodology: PP, SM, SP, Formal analysis and investigation: SM, Writing - original draft preparation: SM, Writing - review and editing: PP, SP, Funding acquisition: PP, SM, Resources: PP, SM, Supervision: PP, SP.

Corresponding author

Correspondence to Pattarapan Prasassarakich.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 837.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooninta, S., Poompradub, S. & Prasassarakich, P. Packaging Film of PP/LDPE/PLA/Clay Composite: Physical, Barrier and Degradable Properties. J Polym Environ 28, 3116–3128 (2020). https://doi.org/10.1007/s10924-020-01840-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01840-6

Keywords

Navigation