Skip to main content
Log in

An Effect of Water Presence on Surface Exfoliation of Polypropylene Film Initiated by Photodegradation

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A polypropylene (PP) film photodegradation test was performed in water at 60 °C with a specific photocatalyst under visible light irradiation to identify its fragmentation mechanism. The photodegradation degree reached a maximum at the 144 h photodegradation time and showed the decreases at the 288 h. The surface being uneven was observed at the 288 h in the SEM photograph. These results showed that the surface exfoliation was provoked by the test. The spherulite structure contributed to the surface microcrack location and growth. The microcrack allowed entrance of water into the inner amorphous part. The water caused an internal stress by expanding itself due to radiant heat from the visible light irradiation and induced a microcraze in the interlamellar amorphous region. The microcraze developed into an internal microcrack, and surface microcracks finally coalesced together, producing a planar exfoliation. The major long side length of the exfoliation part was below 100 μm at both the 144 h and 288 h. The weight change ratio and rate of the photodegraded PP film showed multi-stages with the increase of photodegradation time. The increment of positive rate was small, showing that the exfoliation caused suppression of the autoxidation rate. The negative rate was due to the exfoliation behavior and was nonlinear to the photodegradation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852

    Article  CAS  PubMed  Google Scholar 

  2. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Phil Trans R Soc B 364(1526):1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson RC, Swan SH, Moore CJ, vom Saal FS (2009) Our plastic age. Phil Trans R Soc B 364(1526):1973–1976

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    Article  CAS  PubMed  Google Scholar 

  5. Halle AT, Ladirat L, Gendre X, Goudouneche D, Pusineri C, Routaboul C, Tenailleau C, Duployer B, Perez E (2016) Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol 50(11):5668–5675

    Article  PubMed  CAS  Google Scholar 

  6. Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11

    Article  CAS  PubMed  Google Scholar 

  7. Yokota K, Waterfield H, Hastings C, Davidson E, Kwietniewski E, Wells B (2017) Finding the missing piece of the aquatic plastic pollution puzzle: Interaction between primary producers and microplastics. Limnol Oceanogr Lett 2:91–104

    Article  Google Scholar 

  8. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267

    Article  CAS  Google Scholar 

  9. Law KL (2017) Plastics in the marine environment. Annu Rev Mar Sci 9:205–229

    Article  Google Scholar 

  10. Michels J, Stippkugel A, Lenz M, Wirtz K, Engel A (2018) Rapid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B 285:1203–1211

    Article  CAS  Google Scholar 

  11. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  PubMed  Google Scholar 

  12. Law KL (2014) Thompson RC. Microplastics in the seas. Science 345(6193):144–145

    Article  CAS  PubMed  Google Scholar 

  13. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Ubeda B, León SH, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci USA 111(28):10239–10244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, Sleight V, Calafat A, Rogers AD, Narayanaswamy BE, Thompson R (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1(4):140317

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC (2014) Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9(12):e111913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Redd CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329(5996):1185–1188

    Article  CAS  PubMed  Google Scholar 

  17. Koelmans AA, Kooi M, Law KL, Van Sebille E (2017) All is not lost, deriving a top-down mass budget of plastic at sea. Environ Res Lett 12:114028

    Article  CAS  Google Scholar 

  18. Isobe A, Iwasaki S, Uchida K, Tokai T (2019) Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat Commun 10(417):1–13

    CAS  Google Scholar 

  19. Lambert S, Wagner M (2016) Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517

    Article  CAS  PubMed  Google Scholar 

  20. Julienne F, Delorme N, Lagarde F (2019) From macroplastics to microplastics: role of water in the fragmentation of polyethylene. Chemosphere 236:124409

    Article  CAS  PubMed  Google Scholar 

  21. Julienne F, Lagarde F, Delorme N (2019) Influence of the crystalline structure on the fragmentation of weathered polyolefines. Polym Degrad Stab 170:109012

    Article  CAS  Google Scholar 

  22. Qayyum MM, White JR (1993) Effect of stabilizers on failure mechanisms in weathered polypropylene. Polym Degrad Stab 41(2):163–172

    Article  CAS  Google Scholar 

  23. Fechine GJM, Demarquette NR (2008) Cracking formation on the surface of extruded photodegraded polypropylene plates. Polym Eng Sci 48(2):365–372

    Article  CAS  Google Scholar 

  24. Erik RZ, Tracy JM, Amaral-Zettler LA (2013) Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146

    Article  CAS  Google Scholar 

  25. Ohtani B, Adzuma S, Miyadzu H, Nishimoto S, Kahiya T (1989) Photocatalytic degradation of polypropylene film by disperse titanium dioxide particles. Polym Degrad Stab 23(3):271–278

    Article  CAS  Google Scholar 

  26. Turton TJ, White JR (2001) Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene. Polym Degrad Stab 74(3):559–568

    Article  CAS  Google Scholar 

  27. Mina MF, Seema S, Matin R, Rahaman MJ, Sarker RB, Gafur MA, Bhuiyan MAH (2009) Improved performance of isotactic polypropylene/titanium dioxide composites: effect of processing conditions and filler content. Polym Degrad Stab 94(2):183–188

    Article  CAS  Google Scholar 

  28. Blakey I, George GA (2000) Raman spectral mapping of photo-oxidised polypropylene. Polym Degrad Stab 70(2):269–275

    Article  CAS  Google Scholar 

  29. Koutny M, Lemaire J, Delort AM (2006) Biodegradation of polyethylene films with prooxidant additives. Chemosphere 64(8):1243–1252

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low-molecular-weight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J Biotechnol 75(1):57–70

    Article  CAS  PubMed  Google Scholar 

  31. Nakatani H, Hamachi R, Fukui K, Motokucho S (2018) Synthesis and activity characteristics of visible light responsive polymer photocatalyst system with a styrene block copolymer containing TiO2 gel. J Colloid Interface Sci 532:210–217

    Article  CAS  PubMed  Google Scholar 

  32. Yamada S, Mouri E, Yoshinaga K (2011) Incorporation of titanium dioxide particles into polymer matrix using block copolymer micelles for fabrication of high refractive and transparent organic–inorganic hybrid materials. J Polym Sci Polym Chem 49(3):712–718

    Article  CAS  Google Scholar 

  33. Albertsson AC, Andresson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18(1):73–87

    Article  CAS  Google Scholar 

  34. Albertsson AC, Barenstedt C, Karlsson S (1992) Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polym Degrad Stab 37(2):163–171

    Article  CAS  Google Scholar 

  35. Weiland M, Daro A, Dacid C (1995) Biodegradation of thermally oxidized polyethylene. Polym Degrad Stab 48(2):275–289

    Article  CAS  Google Scholar 

  36. Commereuc S, Vaillant D, Philippart JL, Lacoste J, Lemaire J, Carlsson DJ (1997) Photo and thermal decomposition of iPP hydroperoxides. Polym Degrad Stab 57(2):175–182

    Article  CAS  Google Scholar 

  37. Gugumus F (1998) Thermooxidative degradation of polyolefins in the solid state-6. Kinetics of thermal oxidation of polypropylene. Polym Degrad Stab 62(2):235–243

    Article  CAS  Google Scholar 

  38. Nakatani H, Shibata H, Miyazaki K, Yonezawa T, Takeda H, Azuma Y, Watanabe S (2010) Studies on heterogeneous degradation of polypropylene/talc composite: effect of iron impurity on the degradation behavior. J Appl Polym Sci 115(1):167–173

    Article  CAS  Google Scholar 

  39. Sugimoto M, Ishikawa M, Hatada K (1995) Toughness of polypropylene. Polymer 36(19):3675–3682

    Article  CAS  Google Scholar 

  40. Audouin L, Achimsky L, Verdu J (2000) Kinetic modeling of low-temperature oxidation of hydrocarbon polymers. In: Halim Hamid S (ed) Handbook of polymer degradation, 2nd edn. Marcel Dekker, New York, pp 727–763

    Google Scholar 

  41. Rychly J, Matisova-Rychla L, Csmorova K, Achimsky L, Audouin L, Tcharkhtchi A, Verdu J (1997) Kinetics of mass changes in oxidation of polypropylene. Polym Degrad Stab 58(3):269–274

    Article  CAS  Google Scholar 

  42. Nakatani H, Suzuki S, Tanaka T, Terano M (2005) New kinetic aspects on the mechanism of thermal oxidative degradation of polypropylenes with various tacticities. Polymer 46(26):12366–12371

    Article  CAS  Google Scholar 

  43. Audouin L, Gueguen V, Tcharkhtchi A, Verdu J (1995) “Close loop” mechanistic schemes for hydrocarbon polymer oxidation. J Polym Sci Part A 33(6):921–927

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 7th Long-range Research Initiative, No. 19_D08-01 from Japan Chemical Industry Association. This study made use of instruments (SEM) in the Advanced Material Science Research Unit Sharing System of Nagasaki University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayuki Nakatani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10924_2020_1769_MOESM1_ESM.tiff

Supplementary file1 (TIFF 849 kb) Figure S1 Synthetic schemes of PS-b-PAA containing TiO2 gel and CuPc (contact catalyst).

Supplementary file2 (TIFF 30 kb) Figure S2 Hydroperoxide IR spectra of PP films with various photodegradation time.

Supplementary file3 (TIFF 31 kb) Figure S3 Carbonyl IR spectra of PP films with various photodegradation time.

10924_2020_1769_MOESM4_ESM.tiff

Supplementary file4 (TIFF 7405 kb) Figure S4 SEM photograph of photodegraded PP film with contact catalyst. Photodegradation treatment for 144 h at 30 ºC in water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatani, H., Kyan, T. & Muraoka, T. An Effect of Water Presence on Surface Exfoliation of Polypropylene Film Initiated by Photodegradation. J Polym Environ 28, 2219–2226 (2020). https://doi.org/10.1007/s10924-020-01769-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01769-w

Keywords

Navigation