Skip to main content
Log in

Preparation and Characterization of Anionic Composite Hydrogel for Dyes Adsorption and Filtration: Non-linear Isotherm and Kinetics Modeling

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

An anionic, low-cost, and environmentally friendly composite PVA/Agar/Bentonite (PAB) hydrogel was prepared via self-assembly method, then evaluated as an adsorbent for both cationic methylene blue (MB) and anionic Congo red (CR) dyes using static (batch adsorption) and dynamic (column filtration) procedures. The structural/textural and morphological features of the hydrogel were investigated by X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, zeta potential measurements and scanning electronic microscopy. The nonlinear forms of first-order and second-order kinetic model, and nonlinear forms of Langmuir–Freundlich, Redlich–Peterson, Langmuir and Freundlich isotherm model were used to study the equilibrium adsorption. The adsorption kinetics of MB and CR dyes onto composite hydrogel followed the nonlinear form of pseudo-second-order model with the adsorption capacity of 107.45 and 42.05 mg/g, respectively. The equilibrium data were fitted well to the nonlinear Langmuir–Freundlich model for MB dye and nonlinear form of Langmuir model for CR dye, which were confirmed by R2, MSE and EABS values. Using the column purification method, the composite hydrogel PAB promotes the removal of the MB and CR pollutants by maintaining the concentrations of the filtrate solutions below 0.1 mg/L, even when the volume of the dye reaches 20 mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kunz A, Mansilla H, Duran N (2002) A degradation and toxicity study of three textile reactive dyes by ozone. Environ Technol 23(8):911–918

    CAS  PubMed  Google Scholar 

  2. Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide-methacrylate) and amylose. Biores Technol 101(7):2197–2202

    CAS  Google Scholar 

  3. Boukoussa B, Hamacha R, Morsli A, Bengueddach A (2017) Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab J Chem 10:S2160–S2169

    CAS  Google Scholar 

  4. Medjdoubi Z, Hachemaoui M, Boukoussa B, Hakiki A, Bengueddach A, Hamacha R (2019) Adsorption behavior of Janus Green B dye on Algerian diatomite. Mater Res Exp 6(8):085544

    CAS  Google Scholar 

  5. Shaban M, Abukhadra MR, Shahien M, Ibrahim SS (2018) Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes. Environ Chem Lett 16(1):275–280

    CAS  Google Scholar 

  6. Kumari HJ, Krishnamoorthy P, Arumugam T, Radhakrishnan S, Vasudevan D (2017) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int J Biol Macromol 96:324–333

    Google Scholar 

  7. Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M (2019) Alginate-whey an effective and green adsorbent for crystal violet removal: kinetic, thermodynamic and mechanism studies. Int J Biol Macromol 139:944–954

    CAS  PubMed  Google Scholar 

  8. Mokhtar A, Abdelkrim S, Djelad A, Sardi A, Boukoussa B, Sassi M, Bengueddach A (2020) Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohyd Polym 229:115399

    Google Scholar 

  9. Boukoussa B, Hakiki A, Moulai S, Chikh K, Kherroub DE, Bouhadjar L, Guedal D, Messaoudi K, Mokhtar F, Hamacha R (2018) Adsorption behaviors of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. J Mater Sci 53(10):7372–7386

    CAS  Google Scholar 

  10. Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J Chem Eng Data 56(8):3475–3483

    CAS  Google Scholar 

  11. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493

    CAS  Google Scholar 

  12. Levin RL, Degrange MA, Bruno GF, Del Mazo CD, Taborda DJ, Griotti JJ, Boullon FJ (2004) Methylene blue reduces mortality and morbidity in vasoplegic patients after cardiac surgery. Ann Thorac Surg 77(2):496–499

    PubMed  Google Scholar 

  13. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohyd Polym 153:34–46

    CAS  Google Scholar 

  14. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286(1):90–100

    CAS  PubMed  Google Scholar 

  15. Ghorai S, Sarkar AK, Panda AB, Pal S (2013) Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Biores Technol 144:485–491

    CAS  Google Scholar 

  16. Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Biores Technol 101(6):1800–1806

    CAS  Google Scholar 

  17. Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283

    CAS  Google Scholar 

  18. Mokhtar A, Bennabi F, Abdelkrim S, Sardi A, Boukoussa B, Souna A, Bengueddach A, Sassi M (2020) Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: a comparative study. J Incl Phenom Macrocycl Chem 96:353–364

    CAS  Google Scholar 

  19. Shi L-n, Zhang X, Chen Z-l (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45(2):886–892

    CAS  PubMed  Google Scholar 

  20. Motshekga SC, Ray SS, Onyango MS, Momba MN (2013) Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater 262:439–446

    CAS  PubMed  Google Scholar 

  21. Pandey S, Ramontja J (2016) Natural bentonite clay and its composites for dye removal: current state and future potential. Am J Chem Appl 3(2):8

    CAS  Google Scholar 

  22. Anirudhan T, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215–225

    CAS  Google Scholar 

  23. Bergaya F, Lagaly G (2013) General introduction: clays, clay minerals, and clay science. Dev Clay Sci 1:1–19

    Google Scholar 

  24. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci 406:121–129

    CAS  PubMed  Google Scholar 

  25. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çelik A (2012) Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem Eng J 197:379–386

    CAS  Google Scholar 

  26. Bée A, Obeid L, Mbolantenaina R, Welschbillig M, Talbot D (2017) Magnetic chitosan/clay beads: A magsorbent for the removal of cationic dye from water. J Magn Magn Mater 421:59–64

    Google Scholar 

  27. Tao Y, Kong D, Zhang C, Lv W, Wang M, Li B, Huang Z-H, Kang F, Yang Q-H (2014) Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon 69:169–177

    CAS  Google Scholar 

  28. Xie T, Lv W, Wei W, Li Z, Li B, Kang F, Yang Q-H (2013) A unique carbon with a high specific surface area produced by the carbonization of agar in the presence of graphene. Chem Commun 49(88):10427–10429

    CAS  Google Scholar 

  29. Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, Chan SH, Zhao J (2012) Poly (vinyl alcohol) nanocomposites filled with poly (vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces 4(5):2387–2394

    CAS  PubMed  Google Scholar 

  30. Kahr G, Madsen F (1995) Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue adsorption. Appl Clay Sci 9(5):327–336

    CAS  Google Scholar 

  31. Cherifi Z, Boukoussa B, Zaoui A, Belbachir M, Meghabar R (2018) Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason Sonochem 48:188–198

    CAS  PubMed  Google Scholar 

  32. Vijayaraghavan K, Padmesh T, Palanivelu K, Velan M (2006) Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133(1–3):304–308

    CAS  PubMed  Google Scholar 

  33. Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ahsaine HA, Sabbar E, Khamliche L (2019) Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 9(17):9792–9808

    CAS  Google Scholar 

  34. Song H, Chang Y, Wan X, Dai M, Song H, Jin Z (2014) Equilibrium, kinetic, and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite. Ind Eng Chem Res 53(14):5701–5708

    CAS  Google Scholar 

  35. Gunay A (2007) Application of nonlinear regression analysis for ammonium exchange by natural (Bigadiç) clinoptilolite. J Hazard Mater 148(3):708-713

    CAS  PubMed  Google Scholar 

  36. Choy KK, Porter JF, McKay G (2004) Single and multicomponent equilibrium studies for the adsorption of acidic dyes on carbon from effluents. Langmuir 20(22):9646–9656

    CAS  PubMed  Google Scholar 

  37. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    CAS  Google Scholar 

  38. Tan K, Hameed B (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48

    CAS  Google Scholar 

  39. Abdelkrim S, Mokhtar A, Djelad A, Bennabi F, Souna A, Bengueddach A, Sassi M (2019) Chitosan/Ag-bentonite nanocomposites: preparation, characterization, swelling and biological properties. J Inorg Organomet Polym Mater 30:831–840

    Google Scholar 

  40. Abas SNA, Ismail MHS, Siajam SI, Kamal ML (2015) Comparative study on adsorption of Pb (II) ions by alginate beads and mangrove-alginate composite beads. Ad Mater Res. https://doi.org/10.4028/www.scientific.net/AMR.1113.248

    Article  Google Scholar 

  41. Lyons JG, Geever LM, Nugent MJ, Kennedy JE, Higginbotham CL (2009) Development and characterisation of an agar–polyvinyl alcohol blend hydrogel. J Mech Behav Biomed Mater 2(5):485–493

    PubMed  Google Scholar 

  42. Paluszkiewicz C, Holtzer M, Bobrowski A (2008) FTIR analysis of bentonite in moulding sands. J Mol Struct 880(1–3):109–114

    CAS  Google Scholar 

  43. Alabarse FG, Conceição RV, Balzaretti NM, Schenato F, Xavier AM (2011) In-situ FTIR analyses of bentonite under high-pressure. Appl Clay Sci 51(1–2):202–208

    CAS  Google Scholar 

  44. Moussout H, Ahlafi H, Aazza M, Zegaoui O, El Akili C (2016) Adsorption studies of Cu (II) onto biopolymer chitosan and its nanocomposite 5% bentonite/chitosan. Water Sci Technol 73(9):2199–2210

    CAS  PubMed  Google Scholar 

  45. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. Aaps Pharmscitech 8(1):E142–E146

    PubMed Central  Google Scholar 

  46. Rhim JW, Lee SB, Hong SI (2011) Preparation and characterization of agar/clay nanocomposite films: the effect of clay type. J Food Sci 76(3):N40–N48

    CAS  PubMed  Google Scholar 

  47. Bilal M, Asgher M, Shahid M, Bhatti HN (2016) Characteristic features and dye degrading capability of agar agar gel immobilized manganese peroxidase. Int J Biol Macromol 86:728–740

    CAS  PubMed  Google Scholar 

  48. Wang H, Li C, Peng Z, Zhang S (2011) Characterization and thermal behavior of kaolin. J Therm Anal Calorim 105(1):157–160

    CAS  Google Scholar 

  49. Shankar S, Teng X, Rhim J-W (2014) Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohyd Polym 114:484–492

    CAS  Google Scholar 

  50. Roy S, Rhim J-W (2019) Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocoll 94:391–398

    CAS  Google Scholar 

  51. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    CAS  Google Scholar 

  52. Liao D, Wu G, Liao B (2009) Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A 348(1–3):270–275

    CAS  Google Scholar 

  53. Ma D, Zhu B, Cao B, Wang J, Zhang J (2017) Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appl Surf Sci 422:944–952

    CAS  Google Scholar 

  54. Paulino AT, Guilherme MR, Reis AV, Campese GM, Muniz EC, Nozaki J (2006) Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. J Colloid Interface Sci 301(1):55–62

    CAS  PubMed  Google Scholar 

  55. Li W, Ma Q, Bai Y, Xu D, Wu M, Ma H (2018) Facile fabrication of gelatin/bentonite composite beads for tunable removal of anionic and cationic dyes. Chem Eng Res Des 134:336–346

    CAS  Google Scholar 

  56. Abid Z, Hakiki A, Boukoussa B, Launay F, Hamaizi H, Bengueddach A, Hamacha R (2019) Preparation of highly hydrophilic PVA/SBA-15 composite materials and their adsorption behavior toward cationic dye: effect of PVA content. J Mater Sci 54(10):7679–7691

    CAS  Google Scholar 

  57. Tu NTT, Thien TV, Du PD, Chau VTT, Mau TX, Khieu DQ (2018) Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J Environ Chem Eng 6(2):2269–2280

    Google Scholar 

  58. Oussalah A, Boukerroui A, Aichour A, Djellouli B (2019) Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. Int J Biol Macromol 124:854–862

    CAS  PubMed  Google Scholar 

  59. Wang L, Wang A (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147(3):979–985

    CAS  PubMed  Google Scholar 

  60. Cheng B, Le Y, Cai W, Yu J (2011) Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J Hazard Mater 185(2–3):889–897

    CAS  PubMed  Google Scholar 

  61. Samiey B, Ashoori F (2012) Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol. Chem Cent J 6(1):14

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yokwana K, Kuvarega AT, Mhlanga SD, Nxumalo EN (2018) Mechanistic aspects for the removal of congo red dye from aqueous media through adsorption over n-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Phys Chem Earth A/B/C 107:58–70

    Google Scholar 

  63. Fu J, Xin Q, Wu X, Chen Z, Yan Y, Liu S, Wang M, Xu Q (2016) Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres. J Colloid Interface Sci 461:292–304

    CAS  PubMed  Google Scholar 

  64. Kumar R, Ansari SA, Barakat M, Aljaafari A, Cho MH (2018) A polyaniline@ MoS 2-based organic–inorganic nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and isotherm studies. New J Chem 42(23):18802–18809

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, A., Abdelkrim, S., Sardi, A. et al. Preparation and Characterization of Anionic Composite Hydrogel for Dyes Adsorption and Filtration: Non-linear Isotherm and Kinetics Modeling. J Polym Environ 28, 1710–1723 (2020). https://doi.org/10.1007/s10924-020-01719-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01719-6

Keywords

Navigation