Skip to main content
Log in

Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNC) were isolated from Munguba (Pseudobombax munguba) fibers and then functionalized with octadecyl isocyanate. Nanocomposites based on poly(butylene adipate-co-terephthalate) (PBAT) were prepared with different concentrations of cellulose nanocrystals (3, 5 and 7 wt%). We show that the addition of functionalized CNC leads to PBAT-based nanocomposites with enhanced thermal, rheological and mechanical performances, maintaining the biodegradability of the matrix. The better properties of the nanocomposites were related to the optimal amount and the uniform dispersion of CNC in PBAT. The study here presented expands the application of Munguba fibers, exploring their use to prepare PBAT-based biodegradable nanocomposites with improved properties. These nanocomposites have potential for replacement the conventional polymers in future applications with the advantage of exhibiting biodegradability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Attaran SA, Hassan A, Wahit MU (2017) Materials for food packaging applications based on bio-based polymer nanocomposites. J Thermoplast Compos Mater 30:143–173. https://doi.org/10.1177/0892705715588801

    Article  CAS  Google Scholar 

  2. Ferreira F, Mariano M, Pinheiro I et al (2019) Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym Eng Sci. https://doi.org/10.1002/pen.25066

    Article  Google Scholar 

  3. Scaffaro R, Loprest F, Maio A et al (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mate 15:e107–e121. https://doi.org/10.5301/jabfm.500033

    Article  CAS  Google Scholar 

  4. Ferreira FV, Mariano M, Lepesqueur LSS et al (2019) Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. Mater Sci Eng C 98:800–807. https://doi.org/10.1016/j.msec.2019.01.044

    Article  CAS  Google Scholar 

  5. Francisco W, Ferreira FV, Ferreira EV et al (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerosp Technol Manag 7:289–293. https://doi.org/10.5028/jatm.v7i3.485

    Article  CAS  Google Scholar 

  6. Scaffaro R, Maio A, Lo Re G et al (2018) Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends. Compos Sci Technol 156:166–176. https://doi.org/10.1016/j.compscitech.2018.01.008

    Article  CAS  Google Scholar 

  7. Scaffaro R, Maio A, Botta L et al (2019) Tunable release of Chlorhexidine from Polycaprolactone-based filaments containing graphene nanoplatelets. Eur Polym J 110:221–232. https://doi.org/10.1016/j.eurpolymj.2018.11.031

    Article  CAS  Google Scholar 

  8. Botan R, Pinheiro IF, Ferreira FV, Lona LMF (2018) Correlation between water absorption and mechanical properties of polyamide 6 filled with layered double hydroxides (LDH). Mater Res Express 5:65004. https://doi.org/10.1088/2053-1591/aac680

    Article  CAS  Google Scholar 

  9. Lebreton LCM, van der Zwet J, Damsteeg J-W et al (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611. https://doi.org/10.1038/ncomms15611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosa RP, Ferreira FV, Saravia APK et al (2018) A combined computational and experimental study on the polymerization of ε-caprolactone. Ind Eng Chem Res 57:13387–13395. https://doi.org/10.1021/acs.iecr.8b03288

    Article  CAS  Google Scholar 

  12. Scaffaro R, Maio A, Lopresti F (2019) Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos Sci Technol 169:60–69. https://doi.org/10.1016/j.compscitech.2018.11.003

    Article  CAS  Google Scholar 

  13. Scaffaro R, Maio A, Gulino EF, Megna B (2019) Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites. Compos Part B Eng 167:199–206. https://doi.org/10.1016/j.compositesb.2018.12.025

    Article  CAS  Google Scholar 

  14. Scaffaro R, Maio A, Lopresti F (2018) Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves. Compos part A-Appl S 112:315–327. https://doi.org/10.1016/j.compositesa.2018.06.024

    Article  CAS  Google Scholar 

  15. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344. https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  16. Muthuraj R, Misra M, Mohanty AK (2017) Biodegradable compatibilized polymer blends for packaging applications: a literature review. J Appl Polym Sci 45726. https://doi.org/10.1002/app.45726

  17. Santana-Melo GF, Rodrigues BVM, da Silva E et al (2017) Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloid Surface B 155:544–552. https://doi.org/10.1016/j.colsurfb.2017.04.053

    Article  CAS  Google Scholar 

  18. Pereira da Silva JS, Farias da Silva JM, Soares BG, Livi S (2017) Fully biodegradable composites based on poly(butylene adipate- co -terephthalate)/peach palm trees fiber. Compos Part B Eng 129:117–123. https://doi.org/10.1016/j.compositesb.2017.07.088

    Article  CAS  Google Scholar 

  19. Ferreira FV, Pinheiro IF, Mariano M et al (2019) Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polym Compos. https://doi.org/10.1002/pc.25196

    Article  Google Scholar 

  20. Morelli CL, Belgacem N, Bretas RES, Bras J (2016) Melt extruded nanocomposites of polybutylene adipate-co-terephthalate (PBAT) with phenylbutyl isocyanate modified cellulose nanocrystals. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43678

    Article  CAS  Google Scholar 

  21. Siqueira G, Bras J, Follain N et al (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717. https://doi.org/10.1016/j.carbpol.2012.08.057

    Article  CAS  PubMed  Google Scholar 

  22. Bras J, Hassan ML, Bruzesse C et al (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633. https://doi.org/10.1016/j.indcrop.2010.07.018

    Article  CAS  Google Scholar 

  23. Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. https://doi.org/10.1021/la9028595

    Article  CAS  PubMed  Google Scholar 

  24. Gribel R, Abbott R (1996) Genetics of cytosolic phosphoglucose isomerase (PGI) variation in the Amazonian tree Pseudobombax munguba (Bombacaceae). Heredity 76:531–538

    Article  CAS  Google Scholar 

  25. Pinheiro IF, Morales AR, Mei LH (2014) Polymeric biocomposites of poly (butylene adipate-co-terephthalate) reinforced with natural Munguba fibers. Cellulose 21:4381–4391. https://doi.org/10.1007/s10570-014-0387-z

    Article  CAS  Google Scholar 

  26. Mariano M, El Kissi N, Dufresne A (2016) Structural reorganization of CNC in injection-molded CNC/PBAT materials under thermal annealing. Langmuir 32:10093–10103. https://doi.org/10.1021/acs.langmuir.6b03220

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira FV, Dufresne A, Pinheiro IF et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285. https://doi.org/10.1016/j.eurpolymj.2018.08.045

    Article  CAS  Google Scholar 

  28. Scaffaro R, Botta L, Lopresti F et al (2017) Green nanocomposites-based on PLA and natural organic fillers. In: Handbook of composites from renewable materials, structure and chemistry. Wiley, Hoboken, pp 637–669

    Chapter  Google Scholar 

  29. Scaffaro R, Botta L, Lopresti F et al (2017) Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose 24:447–478. https://doi.org/10.1007/s10570-016-1143-3

    Article  CAS  Google Scholar 

  30. Mariano M, Pilate F, de Oliveira FB et al (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688. https://doi.org/10.1021/acsomega.7b00387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferreira FV, Pinheiro IF, Gouveia RF et al (2018) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 39:E9–E29. https://doi.org/10.1002/pc.24583

    Article  CAS  Google Scholar 

  32. Morelli CL, Belgacem MN, Branciforti MC et al (2016) Nanocomposites of PBAT and cellulose nanocrystals modified by in situ polymerization and melt extrusion. Polym Eng Sci 56:1339–1348. https://doi.org/10.1002/pen.24367

    Article  CAS  Google Scholar 

  33. Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU (2017) Structure and biocompatibility of bioabsorbable nanocomposites of aliphatic-aromatic copolyester and cellulose nanocrystals. Biomacromol 18:2179–2194. https://doi.org/10.1021/acs.biomac.7b00578

    Article  CAS  Google Scholar 

  34. Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos part A-Appl S 83:80–88. https://doi.org/10.1016/j.compositesa.2015.10.038

    Article  CAS  Google Scholar 

  35. Zhang X, Ma P, Zhang Y (2016) Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites. Polym Bull 73:2073–2085. https://doi.org/10.1007/s00289-015-1594-y

    Article  CAS  Google Scholar 

  36. La Mantia FP, Morreale M, Botta L et al (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2017.07.011

    Article  Google Scholar 

  37. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

  38. Ferreira FV, Mariano M, Rabelo SC et al (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view. Appl Surf Sci 436:1113–1122. https://doi.org/10.1016/j.apsusc.2017.12.137

    Article  CAS  Google Scholar 

  39. Pinheiro IF, Ferreira FV, Souza DHS et al (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365. https://doi.org/10.1016/j.eurpolymj.2017.10.026

    Article  CAS  Google Scholar 

  40. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765. https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  41. ASTM Standard D5988-12 (2012) No Title. Am. Soc. Test. Mater

  42. Campbell C (2008) Soil microbiology, ecology, and biochemistry. Eur J Soil Sci 59:1008–1009. https://doi.org/10.1111/j.1365-2389.2008.01052_2.x

  43. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563. https://doi.org/10.1016/j.polymer.2009.07.038

    Article  CAS  Google Scholar 

  44. Roohani M, Habibi Y, Belgacem NM et al (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498. https://doi.org/10.1016/j.eurpolymj.2008.05.024

    Article  CAS  Google Scholar 

  45. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294. https://doi.org/10.1039/c2nr30260h

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira FV, Cividanes LS, Brito FS et al (2016) Functionalization of carbon nanotube and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, pp 31-61. https://doi.org/10.1007/978-3-319-35110-0_2

  47. Ferreira FV, Francisco W, De Menezes BRC et al (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci doi. https://doi.org/10.1016/j.apsusc.2015.09.202

    Article  Google Scholar 

  48. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941. https://doi.org/10.1039/c0cs00108b

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira FV, Cividanes LDS, Brito FS et al (2016) Functionalizing graphene and carbon nanotubes: a review. Springer, New York, NY. https://doi.org/10.1007/978-3-319-35110-0

    Book  Google Scholar 

  50. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  51. Yin Y, Tian X, Jiang X et al (2016) Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 142:206–212. https://doi.org/10.1016/j.carbpol.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  52. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493. https://doi.org/10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  53. Tan C, Peng J, Lin W et al (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polym J 62:186–197. https://doi.org/10.1016/j.eurpolymj.2014.11.033

    Article  CAS  Google Scholar 

  54. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806. https://doi.org/10.1002/polb.23490

    Article  CAS  Google Scholar 

  55. Einstein A (1906) On the theory of Brownian movement. Ann Phys 19:371–381

    Article  CAS  Google Scholar 

  56. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97. https://doi.org/10.1017/S0022112077001062

    Article  Google Scholar 

  57. de Menezes BRC, Ferreira FV, Silva BC et al (2018) Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J Mater Sci 53:14311–14327. https://doi.org/10.1007/s10853-018-2627-3

    Article  CAS  Google Scholar 

  58. Ferreira FV, Franceschi W, Menezes BRC et al (2017) Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Appl Surf Sci 410:267–277. https://doi.org/10.1016/j.apsusc.2017.03.098

    Article  CAS  Google Scholar 

  59. Ferreira FV, Brito FS, Franceschi W et al (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Interfaces 10:100–109. https://doi.org/10.1016/j.surfin.2017.12.004

    Article  CAS  Google Scholar 

  60. Ferreira FV, Menezes BRC, Franceschi W et al (2017) Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Fullerenes Nanotub Carbon Nanostructures 25:531–539. https://doi.org/10.1080/1536383X.2017.1359553

    Article  CAS  Google Scholar 

  61. Ferreira FV, Francisco W, Menezes BRC et al (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929. https://doi.org/10.1016/j.apsusc.2016.07.164

    Article  CAS  Google Scholar 

  62. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  63. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2018) An overview on properties and applications of poly(butylene adipate- co -terephthalate)-PBAT based composites. Polym Eng Sci. https://doi.org/10.1002/pen.24770

    Article  Google Scholar 

  64. Witt U, Einig T, Yamamoto M et al (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299. https://doi.org/10.1016/S0045-6535(00)00162-4

    Article  CAS  PubMed  Google Scholar 

  65. Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 15:7064–7123. https://doi.org/10.3390/ijms15057064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Someya Y, Kondo N, Shibata M (2007) Biodegradation of poly(butylene adipate-co-butylene terephthalate)/layered-silicate nanocomposites. J Appl Polym Sci 106:730–736. https://doi.org/10.1002/app.24174

    Article  CAS  Google Scholar 

  67. Mohanty S, Nayak SK (2012) Biodegradable nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and organically modified layered silicates. J Polym Environ 20:195–207. https://doi.org/10.1007/s10924-011-0408-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the São Paulo Research Foundation – FAPESP (Grant 2016/09588-9 – Ph.D. fellowship of F.V.F), CAPES, FAPEAM and CNPq for financial support. The authors also thank Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP for the language services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Ferreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, I.F., Ferreira, F.V., Alves, G.F. et al. Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties. J Polym Environ 27, 757–766 (2019). https://doi.org/10.1007/s10924-019-01389-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01389-z

Keywords

Navigation