Skip to main content
Log in

Effects of Organo-Modified Clay Addition and Temperature on the Water Vapor Barrier Properties of Polyhydroxy Butyrate Homo and Copolymer Nanocomposite Films for Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer nanocomposites, based on bacterial biodegradable thermoplastic polyester, poly(hydroxy-butyrate) (PHB), poly(hydroxyl-butyrate-co-hydroxy-valerate) (PHBHV), and commercial organo-modified montmorillonite (OMMT-Cloisite 10A) were prepared by solution casting method. This work aims to investigate the effect of Cloisite 10A type clay addition on the water vapour permeability properties of PHB/OMMT, and PHBHV/OMMT nanobiocomposite films. Temperature dependence of water vapor permeabilities of the films were also evaluated at various temperatures, and semi empirical permeability models were used to predict the permeability of polymer systems as a function of clay concentration and aspect ratio of nanoplates. Moreover, thermal, optical, and mechanical properties of the composites were examined by using varieties of techniques including differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), scanning electron microscope (SEM), and thin-film X-ray diffractometer (TF-XRD) respectively. Test results indicated that addition of highly intergallery swollen Cloisite 10A to the PHB/PHBHV, reduced the water vapor permeability up to 41 and 25% compared to native PHB and PHBHV films, respectively. Regarding the all mechanical properties measured, the maximum improvement was achieved for 3 wt% clay loaded samples for both PHB and PHBHV polymer composites. An increase of about 152 and 73% in tensile strength and of 77 and 18% in strain at break was achieved for PHB and PHBHV polymers, respectively. As a result of X-ray diffraction analysis, exfoliated structure was achieved at low clay loaded sample (1% w/w), however at higher concentration (3% w/w) the structure found as intercalated. Therefore, it is an evident that enhancement of characteristic properties highly depend on the dispersion level of clay particles in polymer matrix. The results obtained in this study show the feasibility of improvement of the properties of PHB based polymers with incorporation of nanoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haugaard VKU, Mortensen AM, Hoegh G, Petersen L, Monahan KF (2001) In: Biobased packaging materials for the food industry-status and perspectives. KVL Department of Dairy and Food Science, Copenhagen

    Google Scholar 

  2. Platt DK (2006) In: Biodegradable polymers market report. Smithers Rapra Limited, Shropshire

    Google Scholar 

  3. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) J Appl Polym Sci 108:2787

    Article  CAS  Google Scholar 

  4. Mai Y-W, Yu Z-Z (2006) Polymer nanocomposites. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  5. Zaikov GE, Pankova YN, Shchegolikhin AN, Iordanskii AL, Zhulkina AL, Ol’khov AA (2010) J Mol Liq 156:65

    Article  Google Scholar 

  6. Miguel O, Egiburu JL, Iruin JJ (2001) Polymer 42:953

    Article  CAS  Google Scholar 

  7. Botana A, Mollo M, Eisenberg P, Sanchez RMT (2010) Appl Clay Sci 47:263

    Article  CAS  Google Scholar 

  8. Charlon S, Follain N, Chappey C, Dargent E, Soulestin J, Sclavons M, Marais S (2015) J Membr Sci 496:185

    Article  CAS  Google Scholar 

  9. Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Appl Clay Sci 47:263

    Article  CAS  Google Scholar 

  10. Picard E, Vermogen A, Gerard JF, Espuche E (2007) J Membr Sci 292:133

    Article  CAS  Google Scholar 

  11. Erceg M, Kovacic T, Klaric I (2009) Thermochim Acta 485:26

    Article  CAS  Google Scholar 

  12. Cretois R, Follain N, Dargent E, Soulestin J, Bourbigot S, Marais S, Lebrun L (2014) J Membr Sci 467:56

    Article  CAS  Google Scholar 

  13. Mittal V (2010) Optimization of polymer nanocomposite properties. Wiley, Weinheim

    Book  Google Scholar 

  14. Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, Takeuchi S (2005) Polym Degrad Stab 87:69

    Article  CAS  Google Scholar 

  15. Erceg M, Kovacic T, Perinovic S (2010) Polym Compos 31:272

    CAS  Google Scholar 

  16. Oguzlu H, Tihminlioglu F (2010) Macromol Symp 298:91

    Article  CAS  Google Scholar 

  17. Bordes P, Pollet E, Bourbigot S, Avérous L (2008) Macromol Chem Phys 209:1473

    Article  CAS  Google Scholar 

  18. D’Amico DA, Manfredi LB, Cyras VP (2012) J Appl Polym Sci 123:200

    Article  Google Scholar 

  19. Carli LN, Crespo JS, Mauler RS (2011) Compos Part A 42:1601

    Article  Google Scholar 

  20. Choi WM, Kim TW, Park OO, Chang YK, Lee JW (2003) J Appl Polym Sci 90:525

    Article  CAS  Google Scholar 

  21. Koo JH, (2006) Polymer nanocompomposites processing, characterization, applications, CRC Press, Boca Raton

    Google Scholar 

  22. Cervantes-Uc JM, Cauich-Rodriguez JV, Vazquez-Torres H, Garfias-Mesias LF, Paul DR (2007) Thermochim Acta 457:92

    Article  CAS  Google Scholar 

  23. Gatos KG, Karger-Kocsis J (2007) Eur Polym J 43:1097

    Article  CAS  Google Scholar 

  24. Paul DR, Robeson LM (2008) Polymer 49:3187

    Article  CAS  Google Scholar 

  25. Luecha J, Sozer N, Kokini JL (2010) J Mater Sci 45:3529

    Article  CAS  Google Scholar 

  26. Mittal V (2010) Barrier resistance generation in polymer nanocomposites. Wiley, New Jersey

    Book  Google Scholar 

  27. Sun LY, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) J Membrane Sci 318:129

    Article  CAS  Google Scholar 

  28. Nielsen LE (1967) J Macromol Sci A 1:929

    Article  CAS  Google Scholar 

  29. Eitzman DM, Melkote RR, Cussler EL (1996) Aiche J 42:2

    Article  CAS  Google Scholar 

  30. Lape NK, Nuxoll EE, Cussler EL (2004) J Membrane Sci 236:29

    Article  CAS  Google Scholar 

  31. Bharadwaj RK (2001) Macromolecules 34:9189

    Article  CAS  Google Scholar 

  32. Herrera-Alonso JM, Marand E, Little J, Cox SS (2009) Polymer 50:5744

    Article  CAS  Google Scholar 

  33. Hulsmann P, Philipp D, Kohl M (2009) Rev Sci Instrum 80:113901

    Article  Google Scholar 

  34. Ikejima T, Yagi K, Inoue Y (1999) Macromol Chem Phys 200:413

    Article  CAS  Google Scholar 

  35. Hong SI, Lee JW, Son SM (2005) Packag Technol Sci 18:1

    Article  CAS  Google Scholar 

  36. Puglia D, Fortunati E, D’Amico DA, Manfredi LB, Cyras VP, Kenny JM (2014) Polym Degrad Stab 99:127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Council of Turkey (Tübitak) is gratefully acknowledged for supporting this Project. (#108M335). The authors are grateful to Professor Orhan Oztürk in the Physics Department of İzmir Institute of Technology (Iztech) for XRD characterization of the samples and to Material Research Center of İztech for STEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Funda Tihminlioglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akin, O., Tihminlioglu, F. Effects of Organo-Modified Clay Addition and Temperature on the Water Vapor Barrier Properties of Polyhydroxy Butyrate Homo and Copolymer Nanocomposite Films for Packaging Applications. J Polym Environ 26, 1121–1132 (2018). https://doi.org/10.1007/s10924-017-1017-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1017-2

Keywords

Navigation