Skip to main content
Log in

Silver Nanoparticle Embedded α-Chitin Nanocomposite for Enhanced Antimicrobial and Mosquito Larvicidal Activity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Advent of nanotechnology opens up potential avenues for overcoming various challenges that includes control and cure of infectious diseases. The present study is focused on the synthesis of α-chitin nanoparticles (CNP) from the shells of Penaeus monodon Fabricius, silver nanoparticles (AgNP) and α-chitin/silver nanocomposite (CNP/AgNP), and to evaluate their antimicrobial and mosquito larvicidal activities. The antibacterial and antifungal activities are assessed against five different bacterial and fungal strains. Also the mosquito larvicidal potential is studied against Aedes aegypti a potential vector for malaria and dengue fever. The synthesized nanocomposites are characterized using UV–Vis spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscope and dynamic light scattering analysis. The antibacterial and antifungal assays reveal that the CNP/AgNP has an enhanced antimicrobial effect on inhibition of bacteria (P. vulgaris, K. pneumonia and S. aureus) as well as fungi (C. albicans, T. viridae, A. niger and A. alternate). Mosquito larvicidal assays confirm that CNP/AgNP has shown lowest LC50 and LC90 values than CNP and AgNP against all the instars of A. aegypti. Hence our result suggests that the incorporation of AgNP with CNP could improve the antimicrobial and mosquito larvicidal activity and have the potential to be used as biocompatible antimicrobial and mosquito larvicidal material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang S, Bai J, Li C, Zhang Y, Zhang J (2012) Ag nanoparticle-embedded one-dimensional β-CD/PVP composite nanofibers prepared via electrospinning for use in antibacterial material. Colloid Polym Sci 290(7):667–672

    Article  CAS  Google Scholar 

  2. Nagarajan S, Mohana M, Sudhagar P, Raman V, Nishimura T, Kim S, Rajendran N (2012) Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. ACS Appl Mater Interfaces 4(10):5134–5141

    Article  CAS  Google Scholar 

  3. Pandian CJ, Palanivel R, Dhananasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315

    Article  CAS  Google Scholar 

  4. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  Google Scholar 

  5. Shukla S, Kim KT, Baev A, Yoon YK, Litchinitser NM, Prasad PN (2010) Fabrication and characterization of gold–polymer nanocomposite plasmonic nanoarrays in a porous alumina template. ACS Nano 4(4):2249–2255

    Article  CAS  Google Scholar 

  6. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17(6):657–669

    Article  CAS  Google Scholar 

  7. Jayakumar R, Prabaharan M, Kumar PS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337

    Article  CAS  Google Scholar 

  8. Shahidi F, Abuzaytoun R (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nut Res 49:93–137

    Article  CAS  Google Scholar 

  9. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Heras Á (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  10. Jayakumar R, Chennazhi K, Muzzarelli R, Tamura H, Nair S, Selvamurugan N (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 79(1):1–8

    Article  CAS  Google Scholar 

  11. Tamura H, Furuike T, Nair SV, Jayakumar R (2011) Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydr Polym 84(2):820–824

    Article  CAS  Google Scholar 

  12. Pandian CJ, Palanivel R, Dhanasekaran S (2016) Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. J Nanopart 2016:1–13

    Article  Google Scholar 

  13. Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian J Chem 7(6):1131–1139

    Article  CAS  Google Scholar 

  14. WHO fact sheet (updated March 2014) for vector borne diseases. http://www.who.int/campaigns/world-health-day/2014/fact-sheets/en/336

  15. Raghavendra K, Subbarao S (2002) Chemical insecticides in malaria vector control in India. ICMR Bull 32(10):1–7

    Google Scholar 

  16. Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102(5):981–988

    Article  Google Scholar 

  17. Solairaj D, Palanivel R, Pappu S (2015) Adsorption of methylene blue, bromophenol blue and coomassie brilliant blue by α-chitin nanoparticles. J Adv Res 7(1):113–124

    Google Scholar 

  18. Deng W, Jin D, Drozdowicz-Tomsia K, Yuan J, Wu J, Goldys EM (2011) Ultrabright Eu-doped plasmonic Ag@ SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background. Adv Mater 23(40):4649–4654

    Article  CAS  Google Scholar 

  19. Singh R, Singh AK, Soam A, Shahi SK (2013) Antifungal screening of various spice extracts on azole resistant strains of Candida. Curr Discov 2(1):46–51

    Google Scholar 

  20. Lokina S, Stephen A, Kaviyarasan V, Arulvasu C, Narayanan V (2014) Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur J Med Chem 76:256–263

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  22. Miller G (1959) Use of dinitrisalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  23. Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368

    Article  CAS  Google Scholar 

  24. Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biot 85(4):1115–1122

    Article  CAS  Google Scholar 

  25. Broekaert WF, Terras FR, Cammue BP, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69(1–2):55–59

    Article  CAS  Google Scholar 

  26. de Oliveira Pereira F, Mendes JM, de Oliveira Lima E (2013) Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med Mycol 51(5):507–513

    Article  Google Scholar 

  27. Manilal A, Thajuddin N, Selvin J, Idhayadhulla A, Kumar RS, Sujith S (2011) In vitro mosquito larvicidal activity of marine algae against the human vectors, Culex quinquefasciatus (Say) and Aedes aegypti (Linnaeus) (Diptera: Culicidae). Int J Zool Res 7(3):272–278

    Article  Google Scholar 

  28. Koodalingam A, Mullainadhan P, Arumugam M (2011) Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae). Acta Trop 118(1):27–36

    Article  CAS  Google Scholar 

  29. Nathan SS, Choi MY, Paik CH, Seo HY (2007) Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pestic Biochem Phys 88(3):260–267

    Article  CAS  Google Scholar 

  30. Pandian CJ, Palanivel R, Dhanasekaran S (2015) Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chin J Chem Eng 23(8):1307–1315

    Article  CAS  Google Scholar 

  31. El-Kheshen AA, El-Rab SFG (2012) Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chem 4(1):53–65

    CAS  Google Scholar 

  32. Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21(2):807–813

    Article  CAS  Google Scholar 

  33. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  34. Kumar PS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym 80(3):761–767

    Article  CAS  Google Scholar 

  35. Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Hattori H, Matsui T (2013) Preparation of size-controlled silver nanoparticles and chitin-based composites and their antimicrobial activities. J Nanomater. doi:10.1155/2013/693486

    Google Scholar 

  36. Langfield RD, Scarano FJ, Heitzman ME, Kondo M, Hammond GB, Neto CC (2004) Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J Ethnopharmacol 94(2):279–281

    Article  CAS  Google Scholar 

  37. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983

    Article  CAS  Google Scholar 

  38. Losasso C, Belluco S, Cibin V, Zavagnin P, Mičetić I, Gallocchio F, Ricci A (2014) Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol 5:227

    Article  Google Scholar 

  39. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141

    Article  CAS  Google Scholar 

  40. Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  Google Scholar 

  41. Cai X, Zhang B, Liang Y, Zhang J, Yan Y, Chen X, Wu T (2015) Study on the antibacterial mechanism of copper ion-and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloid Surface B 132:281–289

    Article  CAS  Google Scholar 

  42. Wu T, Xie AG, Tan SZ, Cai X (2011) Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloid Surface B 86(1):232–236

    Article  CAS  Google Scholar 

  43. Grigor’eva A, Saranina I, Tikunova N, Safonov A, Timoshenko N, Rebrov A, Ryabchikova E (2013) Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals 26(3):479–488

    Article  Google Scholar 

  44. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):1–9

    Article  Google Scholar 

  45. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    Article  CAS  Google Scholar 

  46. Salaberria AM, Fernandes SC, Diaz RH, Labidi J (2015) Processing of α-chitin nanofibers by dynamic high pressure homogenization: characterization and antifungal activity against A. niger. Carbohydr Polym 116:286–291

    Article  CAS  Google Scholar 

  47. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99

    Article  CAS  Google Scholar 

  48. Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9(1):34

    Article  CAS  Google Scholar 

  49. Mei L, Lu Z, Zhang X, Li C, Jia Y (2014) Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl Mater Interfaces 6(18):15813–15821

    Article  CAS  Google Scholar 

  50. Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    Article  CAS  Google Scholar 

  51. Lemos FJ, Cornel AJ, Jacobs-Lorena M (1996) Trypsin and aminopeptidase gene expression is affected by age and food composition in Anopheles gambiae. Insect Biochem Mol Biol 26(7):651–658

    Article  CAS  Google Scholar 

  52. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45(1):371–391

    Article  CAS  Google Scholar 

  53. Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Salunke BK, Patil SV (2015) Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pestic Biochem Phys 123:49–55

    Article  CAS  Google Scholar 

  54. Koodalingam A, Mullainadhan P, Rajalakshmi A, Deepalakshmi R, Ammu M (2012) Effect of a Bt-based product (Vectobar) on esterases and phosphatases from larvae of the mosquito Aedes aegypti. Pestic Biochem Phys 104(3):267–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the University grants commission, New Delhi, India for the financial assistance of this study through a major research project (F. No. 40-389/2011(SR)). Thanks are also due to the Center for Research in Medical Entomology, Madurai, Tamil Nadu, India for providing the eggs of A. aegypti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palanivel Rameshthangam.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solairaj, D., Rameshthangam, P. Silver Nanoparticle Embedded α-Chitin Nanocomposite for Enhanced Antimicrobial and Mosquito Larvicidal Activity. J Polym Environ 25, 435–452 (2017). https://doi.org/10.1007/s10924-016-0822-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0822-3

Keywords

Navigation