Skip to main content
Log in

Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Silver nanoparticles possess antibacterial effect for various bacteria; however mechanisms of the interaction between Ag-NPs and bacterial cells remain unclear. The aim of our study was to obtain direct evidence of Ag-NPs penetration into cells of Gram-negative bacterium S. typhimurium and Gram-positive bacterium S. aureus, and to study cell responses to Ag-NPs. The Ag-NPs (most 8–10 nm) were obtained by gas-jet method. S. typhimurium (7.81 × 107 CFU), or S. aureus (8.96 × 107 CFU) were treated by Ag-NPs (0.05 mg/l of silver) in orbital shaker at 190 rpm, 37 °C. Bacteria were sampled at 0.5, 1, 1.5, 2, 5 and 23 h of the incubation for transmission electron microscopy of ultrathin sections. The Ag-NPs adsorbed on outer membrane of S. typhimurium and cell wall of S. auereus; penetrated and accumulated in cells without aggregation and damaging of neighboring cytoplasm. In cells of S. aureus Ag-NPs bound with DNA fibers. Cell responses to Ag-NPs differed morphologically in S. typhimurium and S. aureus, and mainly were presented by damage of cell structures. The cytoplasm of S. aureus became amorphous, while S. typhimurium showed lumping and lysis of cytoplasm which led to formation of “empty” cells. Other difference was fast change of cell shape in S. typhimurium, and late deformation of S. aureus cells. The obtained results showed how different could be responses induced by the same NPs in relatively simple prokaryotic cells. Evidently, Ag-NPs directly interact with macromolecular structures of living cells and are exert an active influence on their metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badawy AM, Silva RG, Morris B et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    Article  PubMed  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52(6):1636–1653

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Deng KK, Kim NJ et al (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    Article  CAS  PubMed  Google Scholar 

  • Ciobanu CS, Iconaru SL, Le Coustumer P et al (2012) Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Res Lett 7(1):324

    Article  CAS  PubMed  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166(1–2):119–135

    CAS  PubMed  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR et al (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46(16):9120–9128

    Article  CAS  PubMed  Google Scholar 

  • Du H, Lo TM, Sitompul J et al (2012) Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance. Biochem Biophys Res Commun 424(4):657–662

    Article  CAS  PubMed  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC et al (2009a) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290

    Article  CAS  PubMed  Google Scholar 

  • Fabrega J, Renshaw JC, Lead JR (2009b) Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol 43(23):9004–9009

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GQ et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Hayden SC, Zhao G, Saha K et al (2012) Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J Am Chem Soc 134(16):6920–6923

    Article  CAS  PubMed  Google Scholar 

  • Hogstrand C, Ferguson EA, Galvez F et al (1999) Physiology of acute silver toxicity in the starry flounder (Platichthys stellatus) in seawater. J Comp Physiol B 169(7):461–473

    Article  CAS  PubMed  Google Scholar 

  • Jain J, Arora S, Rajwade JM et al (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6(5):1388–1401

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241–242:363–370

    Article  PubMed  Google Scholar 

  • Jung WK, Koo HC, Kim KW et al (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178

    Article  CAS  PubMed  Google Scholar 

  • Lara HH, Garza-Trevino EN, Ixtepan-Turrent L et al (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS et al (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Lok CN, Ho CM, Chen R et al (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924

    Article  CAS  PubMed  Google Scholar 

  • Maillard JY, Hartemann P (2012) Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol [Epub ahead of print]

  • Mirzajani F, Ghassempour A, Aliahmadi A et al (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5):542–549

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Panacek A, Kvitek L, Prucek R et al (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  CAS  PubMed  Google Scholar 

  • Radzig MA, Nadtochenko VA, Koksharova OA et al (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 102:300–306

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP et al (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    Article  CAS  PubMed  Google Scholar 

  • Rebrov AK, Safonov AI, Timoshenko NI et al (2010) Gas-jet synthesis of silver-polymer films. J Appl Mech Tech Phys 51(4):598–603

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781

    CAS  PubMed  Google Scholar 

  • Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol 186(11):3286–3295

    Article  CAS  PubMed  Google Scholar 

  • Wigginton NS, de Titta A, Piccapietra F et al (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    Article  CAS  PubMed  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X et al (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9):9193–9201

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J Nanobiotechnol 10:19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to Dr. Pyshnaya I. A. for the measurement of the charge of bacteria. This study was done in frames of Interdisciplinary Integration Project of SB RAS № 57, and State Task of Ministry of Education (Project #4.3924.2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ryabchikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor’eva, A., Saranina, I., Tikunova, N. et al. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus . Biometals 26, 479–488 (2013). https://doi.org/10.1007/s10534-013-9633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9633-3

Keywords

Navigation