Skip to main content
Log in

Synthesis and Properties of Biodegradable Poly(vinyl alcohol)/Organo-nanoclay Bionanocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable nanocomposites comprising of biodegradable polymers and bioactive organically modified layered silicates commonly reveal extremely enhanced mechanical and various other properties when compared to those of virgin polymers. This work was undertaken with a view to preparation of polymer bionanocomposites consisting of biodegradable poly(vinyl alcohol) (PVA) and organo-nanoclay. Cloisite Na+ and ammonium salt of l-isoleucine amino acid was used for the preparation of the novel chiral organo-nanoclay via an intercalation reaction in an aqueous solution. PVA/organo-nanoclay bionanocomposites of various compositions were created through the solution intercalation method by ultrasound-assisted technique. The resulting novel materials were characterized by X-ray diffraction and Fourier transform infrared spectroscopy techniques. Thermogravimetric analysis (TGA) and UV/vis spectroscopy were applied to test the properties of PVA bionanocomposites. TGA indicate that the thermal stability is enhanced distinctly, without a sacrifice in optical clarity. The improvement of thermal properties was attributed to the homogeneous and good dispersion of organo-nanoclay in polymeric matrix and the strong hydrogen bonding between O–H groups of PVA and the oxygen atoms of silicate layers or carbonyl group as well as OH group of intercalated amino acid. The morphology of the organo-nanoclay and PVA bionanocomposites was examined by scanning electron microscopy and transmission electron microscopy techniques. Uniform distribution of clay due to intimate interaction between clay and polymer appears to be the cause for improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoshino A, Tsuji M, Ito M, Momochi M, Mizutani A, Takakuwa K, Higo S, Sawada H, Uematsu S (2003) In: Chiellini E, Solaro R (eds) Biodegradable polymers and plastics. Kluwer Academic/Plenum Publishers, USA, p 47

    Chapter  Google Scholar 

  2. Sinha RS, Bousmina M (2005) Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  3. Botana A, Mollo M, Eisenberg P, Torres RM (2010) Appl Clay Sci 47:263–270

    Article  CAS  Google Scholar 

  4. Ren P, Shen T, Wang F, Wang X, Zhang Z (2009) J Polym Environ 17:203–207

    Article  CAS  Google Scholar 

  5. Fomin VA, Guzeev VV (2001) Prog Rubber Plast Technol 17:186–204

    CAS  Google Scholar 

  6. Mohanty AK, Drzal LT, Misra M (2003) Mater Sci Eng 88:60–61

    CAS  Google Scholar 

  7. Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Danila M, Jipa I, Fruth V (2011) J Polym Environ 19:69–79

    Article  CAS  Google Scholar 

  8. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Compos Sci Technol 70:1764–1776

    Article  CAS  Google Scholar 

  9. Visakh PM, Thomas S (2010) Waste Biomass Valor 1:121–134

    Article  CAS  Google Scholar 

  10. Chivrac F, Pollet E, Averous L (2009) Mater Sci Eng, R 67:1–17

    Article  Google Scholar 

  11. Goodship V, Jacobs D (2005) Polyvinyl alcohol: materials, processing and applications. Ogu E (Eds.) Rapra Rev Rep 16:12

  12. Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T (2010) Mater Lett 64:901–904

    Article  CAS  Google Scholar 

  13. Park JH, Lee HW, Chae DK, Oh W, Yun JD, Deng Y, Yeum JH (2009) Colloid Polym Sci 287:943–950

    Article  CAS  Google Scholar 

  14. Xu XJ, Huang SM, Zhang LH (2009) Polym Compos 30:611–617

    Article  CAS  Google Scholar 

  15. Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH (2006) J Appl Polym Sci 101:591–596

    Article  CAS  Google Scholar 

  16. Abdel Tawab K, Magida MM, Ibrahim SM (2011) J Polym Environ in press. doi: 10.1007/s10924-011-0294-4

  17. Hyon SH, Cha WI, Ikada Y, Kita M, Ogura Y, Honda Y (1994) J Biomater Sci Polym Ed 5:397–406

    Article  CAS  Google Scholar 

  18. Li JK, Wang N, Wu XS (1998) J Controlled Release 56:117–126

    Article  CAS  Google Scholar 

  19. Kokabi M, Sirousazar M, Hassan ZM (2007) Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  20. Bryaskova R, Pencheva D, Kale GM, Lad U, Kantardjie T (2010) J Colloid Interface Sci 349:77–85

    Article  CAS  Google Scholar 

  21. Patachia S, Flore C, Friedrich C, Thomann Y (2009) Express Polym Lett 3:320–331

    Article  CAS  Google Scholar 

  22. Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Rapra Technology Limited, Shawbury

    Google Scholar 

  23. Vikas M (2009) Polymer layered silicate nanocomposites. A review. Materials 2:992–1057

    Google Scholar 

  24. Sinha RS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:539–641

    Google Scholar 

  25. Dayma N, Satapathy BK (2010) Mater Des 31:4693–4703

    Article  CAS  Google Scholar 

  26. Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Bull Mater Sci 29:133–145

    Article  CAS  Google Scholar 

  27. He H, Ma Y, Zhu J, Yuan P, Qing Y (2010) Appl Clay Sci 48:67–72

    Article  CAS  Google Scholar 

  28. Baniasadi H, Ramazani A (2010) Javan Nikkhah S. Mater Des 31:76–84

    Article  CAS  Google Scholar 

  29. Qian Z, Hu G, Zhang S, Yang M (2008) Phys B 403:3231–3238

    Article  CAS  Google Scholar 

  30. Carrado KA (2000) Appl Clay Sci 17:1–23

    Article  CAS  Google Scholar 

  31. Zhao F, Wana C, Baoa X, Kandasubramanian B (2009) J Colloid Interface Sci 333:164–170

    Article  CAS  Google Scholar 

  32. Hedley CB, Yuan G, Theng BKG (2007) Appl Clay Sci 35:180–188

    Article  CAS  Google Scholar 

  33. Katti DR, Ghosh P, Schmidt S, Katti KS (2005) Biomacromolecules 6:3276–3282

    Article  CAS  Google Scholar 

  34. Vijaya Kumar R, Palchik O, Koltypin Y, Diamant Y, Gidanken A (2009) Ultrason Sonochem 9:65–70

    Article  Google Scholar 

  35. Cass P, Knower W, Pereeia E, Holmes NP, Hughes T (2010) Ultrason Sonochem 17:326–332

    Article  CAS  Google Scholar 

  36. Mallakpour S, Dinari M (2011) Appl Clay Sci 51:353–359

    Article  CAS  Google Scholar 

  37. Strawhecker KE, Manias E (2000) Chem Mater 12:2943–2949

    Article  CAS  Google Scholar 

  38. Thomassin JM, Pagnoulle C, Caldarella G, Germain A, Jerome R (2006) J Membr Sci 270:50–56

    Article  CAS  Google Scholar 

  39. Xi Y, Frost RL, He H, Kloprogge T, Bostrom T (2005) Langmuir 1:8675–8680

    Article  Google Scholar 

  40. Frost R, Xi Y, He H (2007) J Colloid Interface Sci 305:150–158

    Article  Google Scholar 

  41. Marras SI, Tsimpliaraki A, Zuburtikudis I, Panayiotou C (2007) J Colloid Interface Sci 315:520–527

    Article  CAS  Google Scholar 

  42. Zhou L, Chena H, Jiang X, Lu F, Zhou Y, Yin W, Ji X (2009) J Colloid Interface Sci 332:16–21

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. The partial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Dinari, M. Synthesis and Properties of Biodegradable Poly(vinyl alcohol)/Organo-nanoclay Bionanocomposites. J Polym Environ 20, 732–740 (2012). https://doi.org/10.1007/s10924-012-0432-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0432-7

Keywords

Navigation