Skip to main content
Log in

Utilizing of Sugar Refinery Waste (Cane Molasses) for Production of Bio-Plastic Under Submerged Fermentation Process

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present study, depending upon the availability and cheaper cost, different carbon source were tested for the production of PHAs (Polyhydroxyalkonoates) by soil bacterium Pseudomonas aeruginosa and it was found that sugar refinery waste (cane molasses) produced the maximum PHA (biodegradable polymer) which is precursor for bio-plastic development. Urea served as potent nitrogen source over other inorganic nitrogen sources in bio-plastic synthesis. Effect of different physical parameters viz; pH, temperature and agitation speed were also studied on PHA production. Batch cultivation kinetics under optimized cultural and physical condition showed maximum cell mass and PHA concentration of 7.32 ± 0.2 and 5.60 ± 0.3 g/L, respectively after 54.0 h of cultivation. Sugar refinery waste (Total sugar 4%) and urea (0.8%) improved the economics of the process which exhibited a yield (YP/X) of 0.70 with productivity of 0.11 g/L/h. PHA was further characterized as PHB by using Fourier Transform Infra-red Spectroscopy (FT-IR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lazarevic D, Aoustin E, Buclet N, Brandt N (2010) Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour Conserv Recycling 55:246–259

    Article  Google Scholar 

  2. Flechter A (1993) Plastics from Bacteria and for Bacteria: PHA as matural, biodegradable polyesters. Springer, New York, pp 77–93

  3. Mohanty AK, Draz LT, Mishra M (2003) Nano reinforcement of bio-based polymer-the hope and reality. Polym Mater Sci Eng 88:1–60

    Google Scholar 

  4. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbial Rev 54:246–250

    Google Scholar 

  5. Kumar MS, Mudliar SN, Reddy KMK, Chakraborti T (2004) Production of biodegradable plastic from activated sludge generated from the food processing industrial wastewater treatment plant. Bioresour Technol 95:327–330

    Article  CAS  Google Scholar 

  6. Merugu R, Girisham S, Reddy SM (2010) Production of PHB (Polyhydroxybutyrate) by Rhodopseudomonaspalustris Ku003 and Rhodobacter Capsulatus Ku002 under phosphate limitation. IJABPT 1(3):847–850

    Google Scholar 

  7. Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates) from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  8. Page WJ (1995) Bacterial Polyhydroxyalkanoates, natural biodegradable plastics with a great future. Can J Microbiol 41:1–3

    Article  CAS  Google Scholar 

  9. Ntaikou I, Kourmentza C, Koutrouli EC, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour Technol 100:3724–3730

    Article  CAS  Google Scholar 

  10. Baei M, Sharifzadeh Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World Appl Sci J 7(2):157–161

    Google Scholar 

  11. Enshasy El, Then H, Othman C, Homosany NZ, Sabry H, Sarmidi M, Aziz RA (2010) Enhanced xanthan production process in shake flasks and pilot scale bioreactors using industrial semi defined medium. Afr J Biotechnol 10(6):1029–1038

    Google Scholar 

  12. Faruk Kuzaçaşik, Kazak H, Guney D, Finore I, Poli A, Yenigün O, Nicolaus B, Oner B (2011) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740

    Article  Google Scholar 

  13. Ostle Anthony G, Holt JG (1982) Nile blue a as a fluorescent stain for Poly-3-hydroxybutyrate. Appl Environ Microbiol 44(1):238–241

    Google Scholar 

  14. Tripathi AD, Srivastava SK (2011) Kinetic study of biopolymer (PHB) synthesis in Alcaligenes sp. in submerged fermentation process using TEM. J Polym Sci Environ 19:732–738

    Article  CAS  Google Scholar 

  15. Mahmoudi M, Baei Sharifzadeh M, Najafpour GD, Tabandeh F, Eisazadeh H (2010) Kinetic model for polyhydroxybutyrate (PHB) production by Hydrogenophaga pseudoflava and verification of growth conditions. Afr J Biotechnol 9(21):3151–3157

    CAS  Google Scholar 

  16. Prasertsan P, Wichienchot S, Doelle H, Kennedy JF (2008) Optimization for biopolymer production by Enterobacter cloacae WD7. Carbohydr Polym 71(3):468–475

    Article  CAS  Google Scholar 

  17. Page WJ (1992) Production of poly-3-hydroxybutyrate by Azotobacter vinelandii UWD in media containing sugars and complex nitrogen source. Appl Microbiol Biotechnol 38:117–121

    Article  CAS  Google Scholar 

  18. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421

    Article  CAS  Google Scholar 

  19. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107(3):240–245

    Article  CAS  Google Scholar 

  20. Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, vol 3. Worth Publishers, USA

    Google Scholar 

  21. Mahishi LH, Tripathi G, Rawal SK (2003) Poly (3-hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli harbouring Streptomyces aureofaciens PHB biosynthesis genes: effect of various carbon and nitrogen sources. Microbiol Res 158:19–27

    Article  CAS  Google Scholar 

  22. Grothe E, Young MM, Chisti Y (1999) Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enzyme Microb Technol 251:132–141

    Article  Google Scholar 

  23. Koutinas AA, Xu Y, Wang R, Webb C (2007) Polyhydroxybutyrate production from a novel feed stock derived from a wheat-based biorefinery. Enzyme Microb Technol 40:1035–1044

    Article  CAS  Google Scholar 

  24. Kim M, Baek J, JK LEE (2006) Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy 31:121–127

    Article  CAS  Google Scholar 

  25. Liangqi Z, Jingfan X, Haibin F (2006) Synthesis of poly (3 hydroxybutyrate co-3- hydroxyoctanoate) by a Sinorhizobium fredii strain. Lett Appl Microbiol 4:344–349

    Article  Google Scholar 

  26. Caster TP, Hong GT (1995) Supercritical fluid disruption of and extraction from microbial cells. U.S. Patent 5 380 826

  27. Repaske R (1962) Nutritional requirements for Hydrogenomonas eutropha. J Bacteriol 83:418–422

    CAS  Google Scholar 

  28. Aremu MO, Layokun SK, Solomon BO (2010) Production of Poly (3-hydroxybutyrate) from cassava starch hydrolysate by Pseudomonas aeruginosa NCIB 950. Am J Sci Ind Res ISSN: 2153-649X. doi:10.5251/ajsir.2010.1.3.421.426

  29. Saranya V, Shenbagarathai R (2010) Effect of nitrogen and calcium sources on growth and production of PHA of Pseudomonas sp. LDC-5 and its mutant. Curr Res J Biol Sci 2(3):164–167

    CAS  Google Scholar 

  30. Nur ZY, Belma A, Yavuz B, Nazime M (2004) Effect of carbon and nitrogen sources and incubation time on poly-beta-hydroxybutyrate (PHB) synthesis by Bacillus megaterium 12. Afr J Biotechnol 3:63–69

    Google Scholar 

  31. Purushothaman M, Anderson RKI, Narayana S, Jayaraman VK (2001) Industrial byproducts as cheaper medium components influencing the production of polyhydroxyalkanoates (PHA)- biodegradable plastics. Bioprocess Biosys Eng 24:131–136

    Article  CAS  Google Scholar 

  32. Wu Q, Huang H, Hu GH, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. JBC 80:111–118

    CAS  Google Scholar 

  33. Beaulieu M, Beaulieu Y, Melinard J, Pandian S, Goulet J (1995) Influence of Ammonium salts and cane molasses on growth of Alcaligenes eutrophus and production of polyhydroxybutyrate. Appl Environ Microbiol 61:165–171

    CAS  Google Scholar 

  34. Santhanam A, Sasidharan S (2010) Microbial production of polyhydroxy alkanotes (PHA)from Alcaligens spp. and Pseudomonas oleovorans using different carbon sources. Afr J Biotechnol 9(21):3144–3150

    CAS  Google Scholar 

  35. Sayeed RZ, Gangurde NS (2010) Poly-β-hydroxubutyrate production by Pseudomonas sp. RSZ 1 under aerobic and semi-aerobic condition. Indian J Exp Biol 48:942–947

    Google Scholar 

  36. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen source. Microbiol Res J 156:201–204

    Article  CAS  Google Scholar 

  37. Yilmaz M, Beyatli Y (2005) Poly-b-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses. Zuckerindustrie 130:109–112

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to pay our Sincere thanks to Dr. S. B. Roy for providing us FT-IR facility at Department of Physics, Banaras Hindu University, Varanasi-221005, UP, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dutt Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, A.D., Yadav, A., Jha, A. et al. Utilizing of Sugar Refinery Waste (Cane Molasses) for Production of Bio-Plastic Under Submerged Fermentation Process. J Polym Environ 20, 446–453 (2012). https://doi.org/10.1007/s10924-011-0394-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0394-1

Keywords

Navigation