Skip to main content
Log in

Lightweight Polypropylene Composites Reinforced by Long Switchgrass Stems

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Switchgrass (SG) stems with lengths up to 10 cm have been used as reinforcement to make lightweight composites with polypropylene (PP) webs. The long SG stems, with simple cut or split and without chemical treatment, were used directly in the composites. Utilizing SG stems for composites not only increases the values of SG but also provides a green, sustainable and biodegradable material for the composites industry. Lightweight composites are preferred, especially for automotive applications due to the potential saving in energy. In this research, the effects of manufacturing parameters on the properties of composites have been studied. Although the tensile properties of SG stem are significantly worse than jute fiber, SG stem with low bulk density is found to better reinforce the lightweight composites. Compared with the jute-PP composites of the same density (0.47 g/cm3), composites reinforced by the split SG stems have 56% higher flexural strength, 19% higher modulus of elasticity, 15% higher impact resistance, 63% higher Young’s modulus, 52% lower tensile strength, and similar sound absorption property. The SG-PP composites with optimized properties have the potential to be used for industrial applications such as the support layers in automotive interiors, office panels and ceiling tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276(277):1

    Article  Google Scholar 

  2. Mueller DH, Krobjilowski A (2003) J Ind Text 33:111

    Article  CAS  Google Scholar 

  3. Sink SE (2005) Special report: cars made of plants? Online news release. http://www.edmunds.com/advice/specialreports/articles/105341/article.html. Accessed 13 Dec 2005

  4. Ellison GC, McNaught R (2008) Research & development report―the use of natural fibres in nonwoven structures for applications as automotive component substrates. http://www.defra.gov.uk/farm/crops/industrial/research/reports/Rdrep10.pdf. Accessed 19 Apr 2008

  5. Worldjute, http://www.worldjute.com/jute_prices/prices_index.html. Accessed 31 May 2008

  6. Goel K, Radiotis T, Eisner R, Sherson G, Li J (2000) Pulp Pap Can 101:41

    CAS  Google Scholar 

  7. Law KN, Kokta BV, Mao CB (2001) Bioresour Technol 77:1

    Article  CAS  Google Scholar 

  8. Reddy N, Yang Y (2007) Biotechnol Bioeng 97:1021

    Article  CAS  Google Scholar 

  9. Alemdar A, Sain M (2008) Compos Sci Technol 68:557

    Article  CAS  Google Scholar 

  10. Avella M, Bozzi C, Erba R, Focher B, Marzetti A, Martuscelli E (1995) Die Angewandte Makromolekulare chemie 233:149

    Article  CAS  Google Scholar 

  11. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2008) Aust J Crop Sci 1:37

    CAS  Google Scholar 

  12. Digabel FL, Boquillon N, Dole P, Monties B, Averous L (2004) J Appl Polym Sci 93:428

    Article  Google Scholar 

  13. Frounchi M, Dadbin S, Jahanbakhsh J, Janat-Alipour M (2007) Polym Polym Compos 15:619

    CAS  Google Scholar 

  14. Han G (2001) Wood Res 88:19

    CAS  Google Scholar 

  15. Hassan ML, Nada MA (2003) J Appl Polym Sci 87:653

    Article  CAS  Google Scholar 

  16. Hervillard T, Cao Q, Laborie M (2007) BioResearch 2:148

    CAS  Google Scholar 

  17. Hornsby PR, Hinrichsen E, Tarverdi K (1997) J Mater Sci 32:443

    Article  CAS  Google Scholar 

  18. Hornsby PR, Hinrichsen E, Tarverdi K (1997) J Mater Sci 32:1009

    Article  CAS  Google Scholar 

  19. Huda S, Yang Y (2008) Compos Sci Technol 68:790

    Article  CAS  Google Scholar 

  20. Huda S, Yang Y (2009) J Polym Environ 17:131

    Article  CAS  Google Scholar 

  21. Mengeloglu F, Karakus K (2008) Sensors 8:500

    Article  CAS  Google Scholar 

  22. Micusik M, Omastova M, Nogellova Z, Fedorko P, Olejnikova K, Trchova M, Chodak I (2006) Eur Polym J 42:2379

    Article  CAS  Google Scholar 

  23. Mishra S, Patil YP (2004) Mol Cryst Liq Cryst 418:101

    Article  CAS  Google Scholar 

  24. Mo X, Wang D, Sun XS (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, New York

    Google Scholar 

  25. Panthapulakkal S, Sain M (2006) J Polym Environ 14:265

    Article  CAS  Google Scholar 

  26. Panthapulakkal S, Sain M, Law S (2005) Polym Int 54:137

    Article  CAS  Google Scholar 

  27. Panthapulakkal S, Law S, Sain M (2005) J Thermoplast Compos Mater 18:445

    Article  CAS  Google Scholar 

  28. Panthapulakkal S, Zereshkian A, Sain M (2006) Bioresour Technol 97:265

    Article  CAS  Google Scholar 

  29. Schirp A, Loge F, Aust S, Swaner P, Turner G, Wolcott M (2006) J Appl Polym Sci 102:5191

    Article  CAS  Google Scholar 

  30. Schirp A, Loge F, Englund K, Wolcott M, Hess J, Houghton T, Lacey J, Thompson D (2006) Forest Prod J 56:90

    CAS  Google Scholar 

  31. Shakeri AR, Hashemi SA (2004) Polym Polym Compos 12:449

    CAS  Google Scholar 

  32. Yao F, Wu Q, Lei Y, Xu Y (2008) Ind Crops Prod 28:63

    Article  CAS  Google Scholar 

  33. Ye X, Julson J, Kuo M, Myers D (2005) Trans ASABE 48:1629

    CAS  Google Scholar 

  34. Ye X, Julson J, Kuo M, Womac A, Myers D (2007) Bioresour Technol 98:1077

    Article  CAS  Google Scholar 

  35. Zhang Y, Lu X, Pizzi A, Delmotte L (2003) Holz als Roh-und Werkstoff 61:49

    Article  CAS  Google Scholar 

  36. Wolcott M (2003) For Prod J 35:25

    Google Scholar 

  37. Huda S, Yang Y (2009) Ind Crop Prod 30:17

    Article  CAS  Google Scholar 

  38. Huda S, Yang Y (2008) Macromol Mater Eng 293:235

    Article  CAS  Google Scholar 

  39. Zou Y, Huda S, Yang Y (2010) Bioresour Technol 101:2026

    Article  CAS  Google Scholar 

  40. Zou Y, Reddy N, Yang Y (2010) J Appl Polym Sci 116:2366

    CAS  Google Scholar 

  41. Bhatnagar S, Hanna MA (1995) Trans ASABE 38:567

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial supports from the University of Nebraska-Lincoln Agricultural Research Division, Hatch Act and USDA Multistate Research Project S-1026, and the John and Louise Skala Fellowship. We thank Narendra Reddy of the University of Nebraska-Lincoln for support in various fashions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Xu, H. & Yang, Y. Lightweight Polypropylene Composites Reinforced by Long Switchgrass Stems. J Polym Environ 18, 464–473 (2010). https://doi.org/10.1007/s10924-010-0165-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0165-4

Keywords

Navigation