Skip to main content
Log in

Preparation of Alginic Acid and Metal Alginate from Algae and their Comparative Study

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Alginic acid and metal alginates are prepared from fresh algae using extraction method. A FTIR spectrum indicates that alginic acid is converted into the metal alginate. Comparing calcium and cobalt alginates, asymmetric stretching of free carboxyl group of calcium alginate at 1630 cm−1 is shifted to 1585 cm−1 in cobalt alginate, due to the change of charge density, radius and atomic weight of the cation, creating a new environment around the carbonyl group. The strong exothermic peak of alginic acid in DSC thermogram indicates the decomposition of biopolymer, whereas strong exothermic peak of metal alginate in DSC thermogram attributed to the decomposition of biopolymer and formation of respective carbonate. Based on DSC study, the decomposition of cobalt alginate occurs at higher temperature comparing to those of sodium and calcium alginate, which may conclude into the higher stability of cobalt alginate. TGA results reveal that, cobalt alginate is more stable than calcium and sodium alginate at 300 °C temperature. Surface morphology (at same magnification), as well as porosity (%) and pore size distribution results change with metals present in different metal alginates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sherrington DC (1977) In: Dyer A, Hudson MJ, Williams PA (eds) Progress in ion exchange: advances and application. The Royal Society of Chemistry, Cambridge, UK, pp 3–15

    Google Scholar 

  2. Rifi EH, Rastegar F, Brunette JP (1995) Talanta 42(6):811–816

    Article  CAS  Google Scholar 

  3. Marsh SF, Svitra ZV, Bowen SM (1995) J Radioanal Nucl Chem 194(1):117–131

    Article  CAS  Google Scholar 

  4. Muzzarelli RAA (1973) Natural chelating polymers. International series of monographs in analytical chemistry. Pergamon Press, Oxford, UK

  5. Konishi Y, Asai S, Midoh Y, Oku M (1993) Sep Sci Technol 28(9):1691–1702

    Article  CAS  Google Scholar 

  6. Mimura H, Ohta H, Akiba K, Onodera Y (2001) J Radioanal Nucl Chem 247(1):33–38

    Article  CAS  Google Scholar 

  7. Rees DA, Welsh EJ (1977) Angew Chem Int Ed Engl 16(4):214–224

    Article  Google Scholar 

  8. Velings NM, Mestdagh MM (1995) Polym Gels Netw 3:311

    Article  CAS  Google Scholar 

  9. Kuyucak N, Volesky B (1989) Biotechnol Bioeng 33(7):823–831

    Article  CAS  Google Scholar 

  10. Jang LK, Geesey GG, Lopez SL, Eastman SL, Wichlacz PL (1990) Chem Eng Commun 94:63–77

    Article  CAS  Google Scholar 

  11. Jang LK, Lopez SL, Eastmen SL, Pryfogel P (1991) Biotechnol Bioeng 37(3):266–273

    Article  CAS  Google Scholar 

  12. Strand KA, Boe A, Dalberg PS, Sikkeland T, Smidsrod O (1982) Macromolecules 15:570–579

    Article  CAS  Google Scholar 

  13. Timmins P, Delargy P, Minchom CM, Howard R (1992) Eur J Pharm Biopharm 38:113–118

    CAS  Google Scholar 

  14. Aslani P, Kennedy RA (1996) J Control Release 42:75–82

    Article  CAS  Google Scholar 

  15. Sabra W, Deckwer WD (2005) In: Dumitriu S (ed) Polysaccharides ‘structural diversity and functional versatility’. Marcel Dekker, New York, p 515

    Google Scholar 

  16. Stanford P, Baird J (1983) The polysaccharides. Academic Press, New York

    Google Scholar 

  17. Wang ZY, Zhang QZ, Konno M, Saito S (1991) Chem Phys Lett 186:463

    Article  CAS  Google Scholar 

  18. Chanda SK, Hirst EL, Percival BGV, Ross AG (1952) J Chem Soc 1833–1837

  19. Chan LW, Lee HY, Heng PWS (2002) J Pharm 242:259

    CAS  Google Scholar 

  20. Nava Saucedo JE, Audras B, Jan S, Bazinet SE, Barbotin JN (1994) FEMS Microbiol Rev 14:93

    Article  Google Scholar 

  21. Zheng H (1997) Carbohydr Res 302(1–2):97–101

    Article  CAS  Google Scholar 

  22. Morris ER, Rees DA, Thom D, Boyd J (1978) Carbohydr Res 66(1):145–154

    Article  CAS  Google Scholar 

  23. Grant G, Morris E, Rees D, Smith P, Thom D (1973) FEBS Lett 32:195

    Article  CAS  Google Scholar 

  24. Yokoyama F, Achife C, Takakira K, Yamashita Y, Monebe K (1992) J Macromol Sci Phys B 31:463

    Article  Google Scholar 

  25. Smidsrod O (1974) Faraday Discuss Chem Soc 57:263–274

    Article  Google Scholar 

  26. Grasdalen H, Larsen B, Smidsrod O (1979) Carbohydr Res 68:23–31

    Article  CAS  Google Scholar 

  27. Grasdalen H, Larsen B, Smidsrod O (1981) Carbohydr Res 89(2):179–191

    Article  CAS  Google Scholar 

  28. Ouwerx C, Velings N, Mestdagh N, Axelos MAV (1998) Polym Gels Netw 6(5):393–408

    Article  CAS  Google Scholar 

  29. Bajpai SK, Sharma S (2004) React Funct Polym 59(2):129–140

    Article  CAS  Google Scholar 

  30. Martinsen A, Storro I, Skjak-Break G (1992) Biotechnol Bioeng 39:186

    Article  CAS  Google Scholar 

  31. Estape D, Godia F, Sola C (1992) Enzyme Microb Technol 14:396

    Article  CAS  Google Scholar 

  32. Andreopoulos A (1987) Biomaterials 8:397

    Article  CAS  Google Scholar 

  33. Mehmetoglu U (1990) Enzyme Microb Technol 12:124

    Article  CAS  Google Scholar 

  34. Hannoun B, Stephanopoulos G (1986) Biotechnol Bioeng 28:829

    Article  CAS  Google Scholar 

  35. Longo M, Novella I, Garcia L, Diaz M (1992) Enzyme Microb Technol 14:586

    Article  CAS  Google Scholar 

  36. http://www.nature.com/news/2002/021014/full/news021014-4.html

  37. Kohn R, Furda I (1968) Collect Czech Chem Commun 33:2217

    CAS  Google Scholar 

  38. Kim SJ, Yoon SG, Kim SI (2004) J Appl Polym Sci 91:3705

    Article  CAS  Google Scholar 

  39. Zohuriaan MJ, Shokrolahi F (2004) Polym Test 23:575

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from KIMST (2007) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Jung Paeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, T.S., Kim, J.S., Lee, SJ. et al. Preparation of Alginic Acid and Metal Alginate from Algae and their Comparative Study. J Polym Environ 16, 198–204 (2008). https://doi.org/10.1007/s10924-008-0097-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0097-4

Keywords

Navigation