Skip to main content
Log in

Cascade valorization process of brown alga seaweed Laminaria hyperborea by isolation of polyphenols and alginate

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Alginate is the dominant structural polysaccharide found in brown seaweed. The industrial process systems for alginic acid isolation use formalin to insolubilize unwanted molecules like polyphenols so they do not get extracted along with the desired polysaccharide. In our present study, we tested six formalin alternatives that would not only allow us to isolate alginate but also retrieve the polyphenol-rich fraction which has uses in the food, cosmetic, and pharmaceutical industries. Sodium alginate was isolated from the marine macroalgae species Laminaria hyperborea with the aid of a common 0.2 wt% formalin solution and compared against water and polar organic fluids, i.e., pure- or a 50 wt% aqueous phase mixture of methanol, ethanol, or acetone. Beside solute molecular dissolution, several commercial mechanical pre-treatment steps were successfully tested, which showed a positive effect correlation with the yield of the produced alginate-rich fraction. Identification of alginate in the samples was confirmed using FT-IR analysis, where some possible impurities were indicated. Evaluated methodologies mostly contributed to higher biopolymer fractions, which were obtained. Furthermore, it was possible to extract up to 128 mg GAE (100 g)−1 of dry weight of polyphenol-rich fraction in resource side streams, impacting the valorization of feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altıok E, Bayçın D, Bayraktar O, Ulkü S (2008) Isolation of polyphenols from the extracts of olive leaves (Olea europaea L.) by adsorption on silk fibroin. Sep Purif Technol 62:342–348

    Google Scholar 

  • Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785

    CAS  PubMed  Google Scholar 

  • Barbosa M, Valentão P, Andrade P (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12:4934–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belda M, Sanchez D, Bover E, Prieto B, Padrón C, Cejalvo D, Lloris JM (2016) Extraction of polyphenols in Himanthalia elongata and determination by high performance liquid chromatography with diode array detector prior to its potential use against oxidative stress. J Chromatogr B 1033–1034:334–341

    Google Scholar 

  • Bertoni G (2013) A key step in phlorotannin biosynthesis revealed. Plant Cell 25:2770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco-Pascual N, Montero MP, Gómez-Guillén MC (2014) Antioxidant film development from unrefined extracts of brown seaweeds Laminaria digitata and Ascophyllum nodosum. Food Hydrocoll 37:100–110

    CAS  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    CAS  PubMed  Google Scholar 

  • Chale-Dzul J, Moo-Puc R, Robledo D, Freile-Pelegrín Y (2015) Hepatoprotective effect of the fucoidan from the brown seaweed Turbinaria tricostata. J Appl Phycol 27:2123–2135

    CAS  Google Scholar 

  • Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT 41:1067–1072

    CAS  Google Scholar 

  • Chu Y, Chang C, Hsu H (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566

    CAS  Google Scholar 

  • Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J 17:205–220

    CAS  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Memb Sci 280:37–44

    CAS  Google Scholar 

  • Duan XJ, Zhang W-W, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 95:37–43

    CAS  Google Scholar 

  • Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB (2010) Thorough study of reactivity of various compound classes toward the Folin−Ciocalteu reagent. J Agric Food Chem 58:8139–8144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraces-Casais P, Lage-Yusty MA, Rodríguez-Bernaldo de Quirós A, López-Hernández J (2012) Evaluation of bioactive compounds in fresh edible seaweeds. Food Anal Methods 5:828–834

    Google Scholar 

  • Fertah M, Belfkira A, Em D, Taourirte M, Brouillette F (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714

    CAS  Google Scholar 

  • Garbisa S, Sartor L, Biggin S, Salvato B, Benelli R, Albini A (2001) Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91:822–832

    CAS  PubMed  Google Scholar 

  • Gomez CG, Pérez Lambrecht MV, Lozano JE, Rinaudo M, Villar MA (2009) Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int J Biol Macromol 44:365–371

    CAS  PubMed  Google Scholar 

  • Haugan JA, Liaaen-Jensen S (1994) Algal carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 22:31–41

    CAS  Google Scholar 

  • Heffernan N, Smyth TJ, Fitzgerald RJ, Soler-Vila A, Brunton N (2014) Antioxidant activity and phenolic content of pressurised liquid and solid-liquid extracts from four Irish origin macroalgae. Int J Food Sci Technol 49:1765–1772

    CAS  Google Scholar 

  • Heo S-J, Cha S-H, Kim K-N, Lee SH, Ahn G, Kang DH, Oh C, Choi YU, Affan A, Kim D, Jeon YJ (2012) Neuroprotective effect of phlorotannin isolated from Ishige okamurae against H2O2-induced oxidative stress in murine hippocampal neuronal cells, HT22. Appl Biochem Biotechnol 166:1520–1532

    CAS  PubMed  Google Scholar 

  • Hernández-Carmona G, Freile-Pelegrín Y, Hernández-Garibay E (2013) Conventional and alternative technologies for the extraction of algal polysaccharides. In: Functional ingredients from algae for foods and nutraceuticals. Elsevier, pp 475–516

  • Ikawa M, Schaper TD, Dollard CA, Sasner JJ (2003) Utilization of Folin−Ciocalteu phenol reagent for the detection of certain nitrogen compounds. J Agric Food Chem 51:1811–1815

    CAS  PubMed  Google Scholar 

  • Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260–261:15–23

    Google Scholar 

  • Jung WK, Heo SJ, Jeon YJ, Lee CM, Park YM, Byun HG, Choi YH, Park SG, Choi IW (2009) Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J Agric Food Chem 57:4439–4446

    CAS  PubMed  Google Scholar 

  • Kamenarska Z, Dimitrova-Konaklieva S, Stefanov K, Najdenski H, Tzvetkova I (2002) Comparative study of the volatile compounds from some Black Sea brown algae. Bot Mar 45:502–509

    CAS  Google Scholar 

  • Kamiya M, Nishio T, Yokoyama A, Yatsuya K, Nishigaki T, Yoshikawa S, Ohki K (2010) Seasonal variation of phlorotannin in sargassacean species from the coast of the Sea of Japan. Phycol Res 58:53–61

    Google Scholar 

  • Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin HC (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res 26:286–293

    CAS  PubMed  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Ocean Mar Biol Ann Rev 26:259–315

  • Kloareg B, Demarty M, Mabeau S (1986) Polyanionic characteristics of purified sulphated homofucans from brown algae. Int J Biol Macromol 8:380–386

    CAS  Google Scholar 

  • Klöck G, Pfeffermann A, Ryser C et al (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713

    PubMed  Google Scholar 

  • Lage-Yusty MA, Alvarado G, Ferraces-Casais P, López-Hernández J (2014) Modification of bioactive compounds in dried edible seaweeds. Int J Food Sci Technol 49:298–304

    CAS  Google Scholar 

  • Leal D, Matsuhiro B, Rossi M, Caruso F (2008) FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr Res 343:308–316

    CAS  PubMed  Google Scholar 

  • Li K, Li XM, Ji NY, Wang BG (2007) Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg Med Chem 15:6627–6631

    CAS  Google Scholar 

  • Li YX, Wijesekara I, Li Y, Kim SK (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224

    CAS  Google Scholar 

  • Li Y, Fu X, Duan D, Liu X, Xu J, Gao X (2017) Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Mar Drugs 15:E49

    PubMed  Google Scholar 

  • Liu X, Yuan W, Meng X (2017) Extraction and quantification of phlorotannins from edible brown algae. Trans ASABE 60:265–271

    CAS  Google Scholar 

  • Lopes G, Sousa C, Bernardo J, Andrade PB, Valentão P, Ferreres F, Mouga T (2011) Sterol profiles in 18 macroalgae of the Portugese coast. J Phycol 47:1210–1218

    CAS  PubMed  Google Scholar 

  • Lorbeer AJ, Lahnstein J, Bulone V, Nguyen T, Zhang W (2015) Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresour Technol 197:302–309

    CAS  PubMed  Google Scholar 

  • Maliakal PP, Coville PF, Wanwimolruk S (2001) Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53:569–577

    CAS  PubMed  Google Scholar 

  • Manns D, Nielsen MM, Bruhn A, Saake B, Meyer AS (2017) Compositional variations of brown seaweeds Laminaria digitata and Saccharina latissima in Danish waters. J Appl Phycol 29:1493–1506

    CAS  Google Scholar 

  • Mazumder A, Holdt SL, De Francisci D, Alvarado-Morales M, Mishra HN, Angelidaki I (2016) Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J Appl Phycol 28:3625–3634

    CAS  Google Scholar 

  • Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. Jpn Agric Res Q JARQ 35:281–290

    Google Scholar 

  • Park P-J, Shahidi F, Jeon Y-J (2004) Antioxidant activities of enzymatic extracts from an edible seaweed Sargassum horneri using ESR spectrometry. J Food Lipids 11:15–27

    Google Scholar 

  • Pereira R, Tojeira A, Vaz DC, Mendes A, Bartolo P (2011) Preparation and characterization of films based on alginate and Aloe Vera. Int J Polym Anal Charact 16:449–464

    CAS  Google Scholar 

  • Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39

    CAS  Google Scholar 

  • Rani V, Shakila RJ, Jawahar P, Srinivasan A (2017) Influence of species, geographic location, seasonal variation and extraction method on the fucoidan yield of the brown seaweeds of Gulf of Mannar, India. Indian J Pharm Sci 79:65–71

    Google Scholar 

  • Rodríguez-Bernaldo de Quirós A, Lage-Yusty MA, López-Hernández J (2010) Determination of phenolic compounds in macroalgae for human consumption. Food Chem 121:634–638

    Google Scholar 

  • Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845

    PubMed  Google Scholar 

  • Sabeena Farvin KH, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138:1670–1681

    CAS  PubMed  Google Scholar 

  • Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361:83–91

    CAS  Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Google Scholar 

  • Susanto E, Fahmi AS, Abe M, Hosekawa M, Miyashita K (2016) Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia 7:66–75

    Google Scholar 

  • Uludag H, De Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    CAS  PubMed  Google Scholar 

  • Van Alstyne KL, McCarthy JJ, Hustead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of northeastern Pacific kelps and rockweeds. J Phycol 35:483–492

    Google Scholar 

  • Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    CAS  PubMed  Google Scholar 

  • Wang Y, Han F, Hu B, Li J, Yu W (2006) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 26:597–603

    CAS  Google Scholar 

  • Wang T, Jónsdóttir R, Liu H, Gu L, Kristinsson HG, Raghavan S, Olafsdóttir G (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J Agric Food Chem 60:5874–5883

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 48:151–155

    CAS  PubMed  Google Scholar 

  • Zhao X, Xue CH, Li ZJ, Cai YP, Liu HY, Qi HT (2004) Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J Appl Phycol 16:111–115

    CAS  Google Scholar 

  • Zhao X, Li B, Xue C, Sun L (2012) Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. J Appl Phycol 24:295–300

    CAS  Google Scholar 

  • Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043

    Google Scholar 

Download references

Acknowledgements

This work was facilitated by the BioApp project (Interreg V-A Italy-Slovenia 2014-2020), its operation co-funded by the European Regional Development Fund, while the authors also acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0152). We thank the company DuPont for providing fresh seaweed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miša Mojca Cajnko or Uroš Novak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajnko, M.M., Novak, U. & Likozar, B. Cascade valorization process of brown alga seaweed Laminaria hyperborea by isolation of polyphenols and alginate. J Appl Phycol 31, 3915–3924 (2019). https://doi.org/10.1007/s10811-019-01901-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01901-x

Keywords

Navigation