Skip to main content
Log in

Mechanical Property Characterization of Plasticized Sugar Beet Pulp and Poly(Lactic Acid) Green Composites Using Acoustic Emission and Confocal Microscopy

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous two phase system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Plastics Technology, http://www.ptonline.com/articles/200203fa2.html, 2007.

  2. Economic Research Service, United States Department of Agriculture, 2006.

References

  1. Balkcom M, Welt B, Berger K (2002) Florida Cooperative Extension Service. Institute of Food and Agricultural Science, University of Florida, Document #ABE339

  2. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  3. Netravali AN, Chabba S (2003) Mater Today 6(4):22–29

    Article  Google Scholar 

  4. Wollerdorfer M, Bader H (1998) Ind Crop Prod 8(2):105–112

    Article  CAS  Google Scholar 

  5. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Comp Sci Technol 63(9):1281–1286

    Article  CAS  Google Scholar 

  6. Oksman K, Skrifvars M, Selin JF (2003) Comp Sci Technol 63(9):1317–1324

    Article  CAS  Google Scholar 

  7. Wang L, Ma W, Gross RA, McCarthy SP (1998) Polym Degrad Stabil 59(1–3):161–168

    Article  CAS  Google Scholar 

  8. Martin O, Averous L (2001) Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  9. Gattin R, Copinet A, Bertrand C, Couturier Y (2002) Int Biodeter Biodegr 50(1):25–31

    Article  CAS  Google Scholar 

  10. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Biomaterials 24(7):1167–1173

    Article  CAS  Google Scholar 

  11. Garlotta D, Doane W, Shogren RL, Lawton JW, Willett JL (2003) J Appl Polym Sci 88:1775–1786

    Article  CAS  Google Scholar 

  12. Cao X, Mohamed A, Gordon SH, Willett JL, Sessa DJ (2003) Thermochim Acta 406(1–2):115–127

    Article  CAS  Google Scholar 

  13. Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P (2002) Biomaterials 23(7):1579–1585

    Article  CAS  Google Scholar 

  14. Kasuga T, Maeda H, Kato K, Nogami M, Hata KI, Ueda M (2003) Biomaterials 24(19):3247–3253

    Article  CAS  Google Scholar 

  15. Park JM, Kim DS, Kim SR (2003) Comp Sci Technol 63:403–419

    Article  CAS  Google Scholar 

  16. Park JM, Kim DS, Kim SR (2004) Comp Sci Technol 64:847–860

    Article  CAS  Google Scholar 

  17. Finkenstadt VL, Liu LS, Willett JL (2007) J Polym Environ 15(1):1–6

    Article  CAS  Google Scholar 

  18. Liu LS, Finkenstadt VL, Liu CK, Coffin DR, Willett JL, Fishman ML, Hicks KB (2007) J Biobased Mater Bioenergy 1:323–330

    Article  Google Scholar 

  19. Finkenstadt VL, Liu CK, Evangelista R, Liu LS, Cermak SC, Hojilla-Evangelista M, Willett JL (2007) Ind Crop Prod 26:36–43

    Article  CAS  Google Scholar 

  20. Rouilly A, Jorda J, Rigal L (2007) Carbohydr Polym 66(1):81–87

    Article  Google Scholar 

  21. Rouilly A, Jorda J, Rigal L (2007) Carbohydr Polym 66(1):117–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Richard Haig, Kathy Hornback, Gary Grose, Brian Jasberg, Nick Latona, Guoping Bao, and Dr. Art Thompson for assistance. We also acknowledge Michelle Archdale (NCAUR Library) and Skip Burhans (Bradley University) for supplying the economic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Finkenstadt.

Additional information

Disclaimer: Names are necessary to report factually on available data. However, the United States Department of Agriculture neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval to the exclusion of others that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstadt, V.L., Liu, CK., Cooke, P.H. et al. Mechanical Property Characterization of Plasticized Sugar Beet Pulp and Poly(Lactic Acid) Green Composites Using Acoustic Emission and Confocal Microscopy. J Polym Environ 16, 19–26 (2008). https://doi.org/10.1007/s10924-008-0085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0085-8

Keywords

Navigation