Skip to main content
Log in

Metal Magnetic Memory Inspection of Q345 Steel Specimens with Butt Weld in Tensile and Bending Test

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Metal magnetic memory (MMM) method is a non-destructive testing method based on the analysis of self-magnetic-leakage field (SMLF) distribution on components’ surfaces. The MMM method can determine stress concentration zones, imperfections, and heterogeneity in the microstructure of the material and in welded joints. In order to study the magnetization of defective and non-defective butt welded Q345 steel specimens under tensile and bending loads, the normal component of the SMLF (Hp(y)) field values were measured. The results demonstrate that Hp(y) field values and gradients are effective in capturing different stress states under tensile and bending loads. The distribution of Hp(y) field values for flexural tests are quite different from that of tensile tests. The gradient values can be used to determine the degree of stress concentration. In addition, three characteristic parameters were calculated. All three parameters can predict failures with early warnings. Specifically, whether the specimen is in tensile stress state or in compressive stress state can be distinguished by the average value of Hp(y) field area. The quality of the butt weld can be judged by the magnetic index (m). The judging criteria can be a significant complement to the inspection of welded joints using MMM method. Further research could help to validate the judging criteria and analyse the factors affecting the accuracy of the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dubov, A.A.: A study of metal properties using the method of magnetic memory. Met. Sci. Heat Treat. 39(9), 401–405 (1997). https://doi.org/10.1007/BF02469065

    Article  Google Scholar 

  2. Dubov, A.A.: Screening of weld quality using the magnetic metal memory effect. Weld World 41(3), 196–199 (1998)

    Google Scholar 

  3. Dubov, A.A.: Diagnostics of metal items and equipment by means of metal magnetic memory. In: NDT’99 and UK Corrosion’99, pp. 287–293 (1999)

  4. BS ISO 24497-3:2007: Non-destructive testing—metal magnetic memory—part 3: inspection of welded joints. Document No. ISO 24497-3:2007 (2007)

  5. Dubov, A.A.: Principle features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods. CINDE J. 27(3), 16 (2006)

    Google Scholar 

  6. Wang, Z.D., Gu, Y., Wang, Y.S.: A review of three magnetic NDT technologies. J. Magn. Magn. Mater. 324(4), 382–388 (2012). https://doi.org/10.1016/j.jmmm.2011.08.048

    Article  Google Scholar 

  7. Bao, S., Fu, M., Hu, S., Gu, Y., Lou, H.: A review of the metal magnetic memory technique. In: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (2016)

  8. Shi, P., Zhang, P., Jin, K., Chen, Z., Zheng, X.: Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials. J. Appl. Phys. 123(14), 145102 (2018). https://doi.org/10.1063/1.5022534

    Article  Google Scholar 

  9. Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28(8), 1537–1546 (1995). https://doi.org/10.1088/0022-3727/28/8/001

    Article  Google Scholar 

  10. Jiles, D.C., Li, L.: A new approach to modeling the magnetomechanical effect. J. Appl. Phys. 95(11), 7058–7060 (2004). https://doi.org/10.1063/1.1687200

    Article  Google Scholar 

  11. Wang, Z.D., Yao, K., Deng, B., Ding, K.Q.: Quantitative study of metal magnetic memory signal versus local stress concentration. NDT & Int. 43(6), 513–518 (2010). https://doi.org/10.1016/j.ndteint.2010.05.007

    Article  Google Scholar 

  12. Wang, Z.D., Deng, B., Yao, K.: Physical model of plastic deformation on magnetization in ferromagnetic materials. J. Appl. Phys. 109(8), 083928 (2011). https://doi.org/10.1063/1.3574923

    Article  Google Scholar 

  13. Ren, S., Ren, X.: Studies on laws of stress-magnetization based on magnetic memory testing technique. J. Magn. Magn. Mater. 449, 165–171 (2018). https://doi.org/10.1016/j.jmmm.2017.09.050

    Article  Google Scholar 

  14. Bao, S., Lou, H., Gong, S.: Magnetic field variation of a low-carbon steel under tensile stress. Insight 56(5), 252–263 (2014). https://doi.org/10.1784/insi.2014.56.5.252

    Article  Google Scholar 

  15. Li, Y., Zeng, X., Wei, L., Wan, Q.: Characterizations of damage-induced magnetization for X80 pipeline steel by metal magnetic memory testing. Int. J. Appl. Electromagnet Mech 54(1), 23–35 (2017). https://doi.org/10.3233/JAE-160074

    Article  Google Scholar 

  16. Guo, P., Chen, X., Guan, W., Cheng, H., Jiang, H.: Effect of tensile stress on the variation of magnetic field of low-alloy steel. J. Magn. Magn. Mater. 323(20), 2474–2477 (2011). https://doi.org/10.1016/j.jmmm.2011.05.015

    Article  Google Scholar 

  17. Roskosz, M., Bieniek, M.: Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements. NDT&E Int. 45(1), 55–62 (2012). https://doi.org/10.1016/j.ndteint.2011.09.007

    Article  MATH  Google Scholar 

  18. Li, X.M., Ding, H.S., Bai, S.W.: Research on the stress-magnetism effect of ferromagnetic materials based on three-dimensional magnetic flux leakage testing. NDT&E Int. 62(2), 50–54 (2014). https://doi.org/10.1016/j.ndteint.2013.11.002

    Article  Google Scholar 

  19. Leng, J., Liu, Y., Zhou, G., Gao, Y.: Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT&E Int. 55(3), 42–46 (2013). https://doi.org/10.1016/j.ndteint.2013.01.005

    Article  Google Scholar 

  20. Huang, H., Yang, C., Qian, Z., Han, G., Liu, Z.: Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel. J. Magn. Magn. Mater. 416, 213–219 (2016). https://doi.org/10.1016/j.jmmm.2016.04.094

    Article  Google Scholar 

  21. Leng, J., Xu, M., Zhou, G., Wu, Z.: Effect of initial remanent states on the variation of magnetic memory signals. NDT&E Int. 52, 23–27 (2012). https://doi.org/10.1016/j.ndteint.2012.08.009

    Article  Google Scholar 

  22. Roskosz, M.: Metal magnetic memory testing of welded joints of ferritic and austenitic steels. NDT&E Int. 44(3), 305–310 (2011). https://doi.org/10.1016/j.ndteint.2011.01.008

    Article  Google Scholar 

  23. Shui, G., Li, C., Yao, K.: Non-destructive evaluation of the damage of ferromagnetic steel using metal magnetic memory and nonlinear ultrasonic method. Int. J. Appl. Electromagnet Mech 47(4), 1023–1038 (2015). https://doi.org/10.3233/JAE-140115

    Article  Google Scholar 

  24. Yao, K., Wang, Z.D., Deng, B., Shen, K.: Experimental research on metal magnetic memory method. Exp. Mech. 52(3), 305–314 (2012). https://doi.org/10.1007/s11340-011-9490-3

    Article  Google Scholar 

  25. Huang, H., Han, G., Qian, Z., Liu, Z.: Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads. J. Magn. Magn. Mater. 443, 281–286 (2017). https://doi.org/10.1016/j.jmmm.2017.07.067

    Article  Google Scholar 

  26. Xu, K., Qiu, X., Tian, X.: Investigation of metal magnetic memory signals of welding cracks. J. Nondestr. Eval. 36(2), 20 (2017). https://doi.org/10.1007/s10921-017-0402-z

    Article  Google Scholar 

  27. Kolokolnikov, S.M., Dubov, A.A., Marchenkov, A.Y.: Determination of mechanical properties of metal of welded joints by strength parameters in the stress concentration zones detected by the metal magnetic memory method. Weld World 58(5), 699–706 (2014). https://doi.org/10.1007/s40194-014-0151-x

    Article  Google Scholar 

  28. Huang, H., Qian, Z., Yang, C., Han, G., Liu, Z.: Magnetic memory signals of ferromagnetic weldment induced by dynamic bending load. Nondestr. Test. Eval. 32(2), 166–184 (2017). https://doi.org/10.1080/10589759.2016.1159307

    Article  Google Scholar 

  29. Dong, L., Xu, B., Dong, S., Song, L., Chen, Q., Wang, D.: Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT&E Int. 42(4), 323–327 (2009). https://doi.org/10.1016/j.ndteint.2008.12.005

    Article  Google Scholar 

  30. Hornreich, R., Rubinstein, H., Spain, R.: Magnetostrictive phenomena in metallic materials and some of their device applications. IEEE Trans. Magn. 7(1), 29–48 (1971). https://doi.org/10.1109/TMAG.1971.1067004

    Article  Google Scholar 

  31. Gatelier-Rothea, C., Chicois, J., Fougeres, R., Fleischmann, P.: Characterization of pure iron and (130 p.p.m.) carbon–iron binary alloy by Barkhausen noise measurements: study of the influence of stress and microstructure. Acta Mater. 46(14), 4873–4882 (1998). https://doi.org/10.1016/S1359-6454(98)00205-5

    Article  Google Scholar 

  32. Jiang, S.T., Li, W.: Condensed Matter Magnetic Physics, 1st edn. Science Publishing Company, Beijing (2003)

    Google Scholar 

  33. Stefanita, C.G., Atherton, D.L., Clapham, L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48(13), 3545–3551 (2000). https://doi.org/10.1016/S1359-6454(00)00134-8

    Article  Google Scholar 

  34. Hwang, D.G., Kim, H.C.: The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D Appl. Phys. 21(12), 1807–1813 (1988). https://doi.org/10.1088/0022-3727/21/12/024

    Article  Google Scholar 

  35. Degauque, J.: Soft magnetic materials: microstructure and properties. Solid State Phenom. 35–36, 335–352 (1993). https://doi.org/10.4028/www.scientific.net/SSP.35-36.335

    Article  Google Scholar 

  36. Jian, X., Jian, X., Deng, G.: Experiment on relationship between the magnetic gradient of low-carbon steel and its stress. J. Magn. Magn. Mater. 321(21), 3600–3606 (2009). https://doi.org/10.1016/j.jmmm.2009.06.077

    Article  Google Scholar 

  37. Wang, H.P., Dong, L.H., Dong, S.Y., Xu, B.S.: Fatigue damage evaluation by metal magnetic memory testing. J. Cent. South Univ. 21(1), 65–70 (2014). https://doi.org/10.1007/s11771-014-1916-5

    Article  Google Scholar 

  38. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. Wiley, Hoboken (2011)

    Google Scholar 

  39. Li, L., Jiles, D.C.: Modified law of approach for the magnetomechanical model: application of the rayleigh law to stress. IEEE Trans. Magn. 39(5), 3037–3039 (2003). https://doi.org/10.1109/INTMAG.2003.1230289

    Article  Google Scholar 

  40. Jiles, D.C., Devine, M.K.: The law of approach as a means of modelling the magnetomechanical effect. J. Magn. Magn. Mater. 140–144, 1881–1882 (1995). https://doi.org/10.1016/0304-8853(94)00928-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 51878548, 51578449] and the Key Project of Natural Science Basic Research Plan of Shaanxi Province [2018JZ5013].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Zhao, X., Wang, W. et al. Metal Magnetic Memory Inspection of Q345 Steel Specimens with Butt Weld in Tensile and Bending Test. J Nondestruct Eval 38, 64 (2019). https://doi.org/10.1007/s10921-019-0603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0603-8

Keywords

Navigation