Skip to main content
Log in

Optimized Dynamic Acousto-elasticity Applied to Fatigue Damage and Stress Corrosion Cracking

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The dynamic acousto-elasticity (DAE) technique uniquely provides the elastic (speed of sound and attenuation) behavior over a dynamic strain cycle. This technique has been applied successfully to highly nonlinear materials such as rock samples, where nonlinear elastic sources are present throughout the material. DAE has shown different nonlinear elastic behavior in tension and compression as well as early-time memory effects (i.e. fast and slow dynamics) that cannot be observed with conventional dynamic techniques (e.g. resonance or wave mixing measurements). The main objective of the present study is to evaluate if the DAE technique is also sensitive to (1) fatigue damage and (2) a localized stress corrosion crack. A secondary objective is to adapt the DAE experimental setup to perform measurements in smaller specimens (thickness of few cm). Several samples (intact aluminium, fatigued aluminium and steel with a stress corrosion crack) were investigated. Using signal processing not normally applied to DAE, we are able to measure the nonlinear elastic response of intact aluminium, distinguish the intact from the fatigued aluminium sample and localize different nonlinear features in the stress corrosion cracked steel sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng, Y.P., Maev, R.G., Solodov, I.Y.: Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)

    Article  Google Scholar 

  2. Ostrovsky, L.A., Johnson, P.A.: Dynamic nonlinear elasticity in geomaterials. Riv. Del Nuovo Cimento. 24, 1–46 (2001)

    Google Scholar 

  3. Jhang, K.Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009)

    Article  Google Scholar 

  4. Rudenko, O.V.: Giant nonlinearities in structurally inhomogeneous media and the fundamentals of nonlinear acoustic diagnostic techniques. Phys.-Usp. 49, 69 (2006)

    Article  Google Scholar 

  5. Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley, New York (2009)

    Book  Google Scholar 

  6. Van den Abeele, K., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000)

    Article  Google Scholar 

  7. Landau, L., Lifshitz, E.: Theory of Elasticity. Pergammon, Oxford (1986)

    Google Scholar 

  8. Buck, O., Morris, W.L.: Acoustic harmonic-generation at unbonded interfaces and fatigue cracks. J. Acoust. Soc. Am. 64, S33–S33 (1978)

    Article  Google Scholar 

  9. Buck, O., Morris, W.L., Inman, R.V.: Acoustic harmonic-generation due to fatigue damage in high-strength aluminum. J. Metals 31, F5 (1979)

  10. Cantrell, J., Yost, W.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487–490 (2001)

    Article  Google Scholar 

  11. Frouin, J., Sathish, S., Matikas, T.E., Na, J.K.: Ultrasonic linear and nonlinear behavior of fatigued Ti–6Al–4V. J. Mater. Res. 14, 1295–1298 (1999)

    Article  Google Scholar 

  12. Kim, J.Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266 (2006)

    Article  Google Scholar 

  13. Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386 (2004)

    Article  Google Scholar 

  14. Ohara, Y., Mihara, T., Sasaki, R., Ogata, T., Yamamoto, S., Kishimoto, Y., Yamanaka, K.: Imaging of closed cracks using nonlinear response of elastic waves at subharmonic frequency. Appl. Phys. Lett. 90, 011902 (2007)

    Article  Google Scholar 

  15. Donskoy, D., Sutin, A., Ekimov, A.: Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E Int. 34, 231–238 (2001)

    Article  Google Scholar 

  16. Van den Abeele, K., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000)

    Article  Google Scholar 

  17. Nazarov, V.E., Ostrovsky, L.A., Soustova, I.A., Sutin, A.M.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth. Planet. Inter. 50, 65–73 (1988)

    Article  Google Scholar 

  18. Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  19. Johnson, P.A.: The new wave in acoustic testing. Mater. World 7, 544–546 (1999)

    Google Scholar 

  20. Van den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Conc. Res. 30, 1453–1464 (2000)

    Article  Google Scholar 

  21. Bentahar, M., El Aqra, H., El Guerjouma, R., Griffa, M., Scalerandi, M.: Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys. Rev. B 73(1), 014116 (2006)

    Article  Google Scholar 

  22. Zardan, J.P., Payan, C., Garnier, V., Salin, J.: Effect of the presence and size of a localized nonlinear source in concrete. J. Acoust. Soc. Am. 128(1), EL38–42 (2010)

    Article  Google Scholar 

  23. Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121, EL125–130 (2007)

    Article  Google Scholar 

  24. Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41, 557–559 (2011)

    Article  Google Scholar 

  25. Antonaci, P., Bruno, C., Bocca, P., Scalerandi, M., Gliozzi, A.: Nonlinear ultrasonic evaluation of load effects on discontinuities in concrete. Cem. Concr. Res. 40, 340–346 (2010)

    Article  Google Scholar 

  26. Zagrai, A., Donskoy, D., Chudnovsky, A., Golovin, E.: Micro-and macroscale damage detection using the nonlinear acoustic vibro-modulation technique. Res. Nondestruct. Eval. 19, 104–128 (2008)

    Google Scholar 

  27. Courtney, C., Drinkwater, B., Neild, S., Wilcox, P.: Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis. NDT & E Int. 41, 223–234 (2008)

    Article  Google Scholar 

  28. Van den Abeele, K., Van de Velde, K., Carmeliet, J.: Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym. Compos. 22, 555–567 (2001)

    Article  Google Scholar 

  29. Bentahar, M., El Guerjouma, R.: Monitoring progressive damage in polymer-based composite using nonlinear dynamics and acoustic emission. J. Acoust. Soc. Am. 125, EL39 (2009)

    Article  Google Scholar 

  30. Van den Abeele, K., Le Bas, P., Van Damme, B., Katkowski, T.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126, 963 (2009)

    Article  Google Scholar 

  31. Van Damme, B., Van Den Abeele, K., Bou Matar, O.: The vibration dipole: a time reversed acoustics scheme for the experimental localisation of surface breaking cracks. Appl. Phys. Lett. 100, 084103 (2012)

    Article  Google Scholar 

  32. Muller, M., Mitton, D., Talmant, M., Johnson, P., Laugier, P.: Nonlinear ultrasound can detect accumulated damage in human bone. J. Biomech. 41, 1062–1068 (2008)

    Article  Google Scholar 

  33. Rivière, J., Haupert, S., Laugier, P., Ulrich, T., Le Bas, P.Y., Johnson, P.A.: Time reversed elastic nonlinearity diagnostic applied to mock osseointegration monitoring applying two experimental models. J. Acoust. Soc. Am. 131, 1922–1927 (2012)

    Article  Google Scholar 

  34. Nazarov, V.E.: Nonlinear damping of sound by sound in metals. Sov. Phys. Acoust.-Ussr. 37, 616–619 (1991)

    Google Scholar 

  35. Nazarov, V.E., Kolpakov, A.B., Radostin, A.V.: Amplitude dependent internal friction and generation of harmonics in granite resonator. Acoust. Phys. 55, 100–107 (2009)

    Article  Google Scholar 

  36. Zaitsev, V., Gusev, V., Castagnede, B.: Luxemburg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence. Phys. Rev. Lett. 89, 105502 (2002)

    Article  Google Scholar 

  37. Westervelt, P.J.: Scattering of sound by sound. J. Acoust. Soc. Am. 29, 199–203 (1957)

    Article  MathSciNet  Google Scholar 

  38. Renaud, G., Talmant, M., Callé, S., Defontaine, M., Laugier, P.: Nonlinear elastodynamics in micro-inhomogeneous solids observed by head wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130(6), 3583–3589 (2011)

    Google Scholar 

  39. Renaud, G., Riviere, J., Haupert, S., Laugier, P.: Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy. J. Acoust. Soc. Am. 133, 3706–3718 (2013)

    Article  Google Scholar 

  40. Rivière, J., Renaud, G., Guyer, R.A., Johnson, P.A.: Pump and probe waves in dynamic acousto-elasticity: comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114, 054905 (2013)

    Article  Google Scholar 

  41. Renaud, G., Callé, S., Defontaine, M.: Remote dynamic acoustoelastic testing: elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94, 011905 (2009)

    Article  Google Scholar 

  42. Hamilton, M.F., Blackstock, D.T.: Nonlinear acoustics. Academic Press, San Diego (1998)

    Google Scholar 

  43. Winkler, K.W., Liu, X.: Measurements of third-order elastic constants in rocks. J. Acoust. Soc. Am. 100, 1392 (1996)

    Article  Google Scholar 

  44. Renaud, G., Calle, S., Remenieras, J.P., Defontaine, M.: Non-linear acoustic measurements to assess crack density in trabecular bone. Int. J. Non-Linear Mech. 43, 194–200 (2008)

    Article  Google Scholar 

  45. Moreschi, H., Calle, S., Guerard, S., Mitton, D., Renaud, G., Defontaine, M.: Monitoring of trabecular bone induced microdamage using a nonlinear wave-coupling technique. In: Ultrasonic Symposium(IUS), IEEE International, IEEE, 550–553 (2009)

  46. Renaud, G., Calle, S., Remenieras, J.P., Defontaine, M.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. Ultrason. Ferroelectri. Freq. Control. 55, 1497–1507 (2008)

    Article  Google Scholar 

  47. Moreschi, H., Callé, S., Guerard, S., Mitton, D., Renaud, G., Defontaine, M.: Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proc. Insti. Mech. Eng. H 225, 1–12 (2011)

    Google Scholar 

  48. Renaud, G., Le Bas, P.-Y., Johnson, P.A.: Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: dynamic acoustoelastic testing. J. Geophys. Res. 117(B6), 1–17 (2012)

    Google Scholar 

  49. Elements of Metallurgy and Engineering Alloys. ASM International, Materials Park (2008)

  50. Ohara, Y., Endo, H., Mihara, T., Yamanaka, K.: Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn. J. Appl. Phys. 48, 07GD01 (2009)

    Google Scholar 

  51. Haupert, S., Renaud, G., Riviere, J., Talmant, M., Johnson, P.A., Laugier, P.: High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am. 130, 2654–2661 (2011)

    Article  Google Scholar 

  52. Tencate, J.A.: Slow dynamics of earth materials: an experimental overview. Pure and Appl. Geophys. 168(12), 2211–2219 (2011)

    Article  Google Scholar 

  53. TenCate, J.A., Smith, E., Guyer, R.A.: Universal slow dynamics in granular solids. Phys. Rev. Lett. 85, 1020–1023 (2000)

    Article  Google Scholar 

  54. Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124–130 (2005)

    Article  Google Scholar 

  55. Cespedes, I., Huang, Y., Ophir, J., Spratt, S.: Methods for estimation of subsample time delays of digitized echo signals. Ultrason. Imaging 17, 142–171 (1995)

    Article  Google Scholar 

  56. Van den Abeele, K., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT & E Int. 34, 239–248 (2001)

    Article  Google Scholar 

  57. Cantrell, J.H., Yost, W.T.: Acoustic harmonic generation from fatigue-induced dislocation dipoles. Philos. Mag. A 69, 315–326 (1994)

    Article  Google Scholar 

  58. Ulrich, T.J., Van Den Abeele, K., Le Bas, P.-Y., Griffa, M., Anderson, B.E., Guyer, R.A.: Three component time reversal: focusing vector components using a scalar source. J. Appl. Phys. 106, 113504 (2009)

    Article  Google Scholar 

  59. Sarma, V.P.N., Reddy, P.J.: Third-order elastic constants of aluminium. Physica Status Solidi (a). 10, 563–567 (1972)

    Article  Google Scholar 

  60. Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)

    Article  Google Scholar 

  61. VandenAbeele, K.E.A., Johnson, P.A., Guyer, R.A., McCall, K.R.: On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation. J. Acoust. Soc. Am. 101, 1885–1898 (1997)

    Google Scholar 

  62. Trarieux, C., Callé, S., Poulin, A., Tranchant, J.-F., Moreschi, H., Defontaine, M.: Measurement of nonlinear viscoelastic properties of fluids using dynamic acoustoelastic testing. In: IOP Conference Series: Mater. Sci. Eng. 42, 012026. (2012)

  63. Trarieux, C., Calle, S., Moreschi, H., Poulin, A., Tranchant, J.F., Defontaine, M.: An analytical model to describe nonlinear viscoelastic properties of fluids measured by dynamic acoustoelastic testing. In: Ultrasonic Symposium(IUS), IEEE, 1–4 (2012)

Download references

Acknowledgments

This work was supported in part by the U.S. Dept. of Energy, Nuclear Energy Fuel Cycle Research and Development program under the Used Fuel Disposition campaign as part of the storage demonstration and experimentation efforts and by Institutional Support (LDRD) at Los Alamos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Haupert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haupert, S., Rivière, J., Anderson, B. et al. Optimized Dynamic Acousto-elasticity Applied to Fatigue Damage and Stress Corrosion Cracking. J Nondestruct Eval 33, 226–238 (2014). https://doi.org/10.1007/s10921-014-0231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0231-2

Keywords

Navigation