Skip to main content
Log in

Impact-Based Nonlinear Acoustic Testing for Characterizing Distributed Damage in Concrete

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Nonlinear acoustics-based nondestructive evaluation (NDE) techniques have shown great promise for identification of microstructure and microcracking in a wide spectrum of materials (e.g., metals, metallic alloys, composites, rocks, cementitious materials). This class of NDE techniques relies on measuring nonlinearity parameters by analyzing the acoustic response of materials that are dynamically perturbed at microstrain levels (strain \(\sim \)10\(^{-6}\)–10\(^{-5})\). Using a mechanical impact to induce microstrain is advantageous for concrete testing because it allows for testing of larger concrete specimens offering potential field transportability. In this paper, two impact-based nonlinear acoustic testing techniques are compared: impact-based nonlinear resonant acoustic spectroscopy (INRAS) and dynamic acousto-elastic testing (IDAET). INRAS gives a global measure of sample hysteretic nonlinearity while IDAET provides a local but comprehensive account of nonlinear elastic properties. We discuss single- versus multi-impact INRAS and propose a physics-based model to describe the data from single-impact INRAS. Then, we introduce IDAET and demonstrate how to extract both classical and non-classical nonlinear parameters from a limited set of test results. INRAS and IDAET are used to monitor the evolution of damage in two sets of concrete samples undergoing freeze-thaw (FT) cycles. Nonlinear parameters extracted from the two tests show good agreement; all exhibiting far more sensitivity to distributed FT damage than standard (i.e. linear) resonance frequency measurements. By presenting alternative ways to collect and analyze the impact-based nonlinear acoustic test data, this study will help in broadening their use and extending their applications to quantitative in-situ evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The corresponding analytical signal is a complex signal whose real part is the signal itself and its imaginary part is the Hilbert transform of the signal.

References

  1. Yang, Z., Weiss, W., Olek, J.: Interaction between micro-cracking, cracking, and reduced durability of concrete: developing methods for considering cumulative damage in life-cycle modeling. August 2005 (2005): doi:10.5703/1288284313255

  2. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34(2), 71–84 (2001). doi:10.1016/S0963-8695(00)00032-3

    Article  Google Scholar 

  3. Saint-Pierre, F., Rivard, P., Ballivy, G.: Measurement of Alkali-Silica reaction progression by ultrasonic waves attenuation. Cem. Concr. Res. 37(6), 948–956 (2007). doi:10.1016/j.cemconres.2007.02.022

    Article  Google Scholar 

  4. Van Den Abeele, K.E.-A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12(1), 17–30 (2000). doi:10.1080/09349840009409646

    Article  Google Scholar 

  5. Van Den Abeele, K.E., Sutin, A., Carmeliet, J., Johnson, P.A.: Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT E Int. 34(4), 239–248 (2001). doi:10.1016/S0963-8695(00)00064-5

  6. Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

  7. Rivière, J., Remillieux, M.C., Ohara, Y., Anderson, B.E., Haupert, S., Ulrich, T.J., Johnson, P.A.: Dynamic acousto-elasticity in a fatigue-cracked sample. J. Nondestruct. Eval. 33(2), 216–225 (2014). doi:10.1007/s10921-014-0225-0

  8. Kachanov, M.L.: Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45(8), 304–335 (1992). doi:10.1115/1.3119761

    Article  Google Scholar 

  9. Nagy, P.B.: Fatigue damage assessment by nonlinear materials characterization. Ultrasonics 36, 375–381 (1998). doi:10.1016/S0041-624X(97)00040-1

    Article  Google Scholar 

  10. Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120(3), 1266–1273 (2006). doi:10.1121/1.2221557, Available at http://dx.doi.org/10.1121/1.2221557%5Cn http://link.aip.org/link/JASMAN/v120/i3/p1266/s1&Agg=doi

  11. Payan, C., Ulrich, T.J., Le Bas, P.Y., Saleh, T., Guimaraes, M.: Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: application to concrete thermal damage. J. Acoust. Soc. Am. 136(2), 537 (2014). doi:10.1121/1.4887451, Available at http://www.ncbi.nlm.nih.gov/pubmed/25096088

  12. Muller, M., Mitton, D., Talmant, M., Johnson, P., Laugier, P.: Nonlinear ultrasound can detect accumulated damage in human bone. J. Biomech. 41(5), 1062–1068 (2008). doi:10.1016/j.jbiomech.2007.12.004

    Article  Google Scholar 

  13. Bouchaala, F., Payan, C., Garnier, V., Balayssac, J.P.: Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011). doi:10.1016/j.cemconres.2011.02.006

    Article  Google Scholar 

  14. Leśnicki, K.J., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT E Int. 44(8), 721–727 (2011). doi:10.1016/j.ndteint.2011.07.010, Available at http://linkinghub.elsevier.com/retrieve/pii/S0963869511000995

  15. Van Den Abeele, K., Le Bas, P.Y., Van Damme, B., Katkowski, T.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: experimental and theoretical study. J. Acoust. Soc. Am. 126(3), 963–972 (2009). doi:10.1121/1.3184583, Available at http://www.ncbi.nlm.nih.gov/pubmed/19739709

  16. van Damme, B., Van Den Abeele, K.: The application of nonlinear reverberation spectroscopy for the detection of localized fatigue damage. J. Nondest. Eval. 33(2), 263–268 (2014). doi:10.1007/s10921-014-0230-3

  17. Eiras, J.N., Monzó, J., Payá, J., Kundu, T., Popovics, J.S.: Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J. Acoust. Soc. Am. 135(2), EL82–EL87 (2014). doi:10.1121/1.4862882, Available at http://scitation.aip.org/content/asa/journal/jasa/135/2/10.1121/1.4862882

  18. Dahlen, U., Ryden, N., Jakobsson, A.: Damage identification in concrete using impact non-linear reverberation spectroscopy. NDT E Int. 75, 15–25 (2015). doi:10.1016/j.ndteint.2015.04.002, Available at http://linkinghub.elsevier.com/retrieve/pii/S0963869515000390

  19. Read, T.A.: The internal friction of single metal crystals. Phys. Rev. 58, 371–380 (1940)

  20. Lebedev, A.B.: Amplitude-dependent elastic-modulus defect in the main dislocation-hysteresis models. Phys. Solid State 41(7), 1105–1111 (1999). doi:10.1134/1.1130947

  21. Inserra, C., Tournat, V., Gusev, V.: Characterization of granular compaction by nonlinear acoustic resonance method. Appl. Phys. Lett. 92(19), 1–3 (2008). doi:10.1063/1.2931088

    Article  Google Scholar 

  22. Renaud, G., Rivière, J., Le Bas, P.Y., Johnson, P.A.: Hysteretic nonlinear elasticity of berea sandstone at low-vibrational strain revealed by dynamic acousto-elastic testing. Geophys. Res. Lett. 40(4), 715–719 (2013). doi:10.1002/grl.50150

    Article  Google Scholar 

  23. Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117(1), 124–130 (2005). doi:10.1121/1.1823351

    Article  Google Scholar 

  24. TenCate, J.A.: Slow dynamics of earth materials: an experimental overview. Pure Appl. Geophys. 168(12), 2211–2219 (2011). doi:10.1007/s00024-011-0268-4

  25. Renaud, G., Rivière, J., Larmat, C., Rutledge, J.T., Lee, R.C., Guyer, R.A., Stokoe, K., Johnson, P.A.: In situ characterization of shallow elastic nonlinear parameters with dynamic acoustoelastic testing. J. Geophys. Res. B: Solid Earth 119(9), 6907–6923 (2014). doi:10.1002/2013JB010625

    Article  Google Scholar 

  26. Rivière, J., Renaud, G., Guyer, R.A., Johnson, P.A.: Pump and probe waves in dynamic acousto-elasticity: comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114(5), 1–19 (2013). doi:10.1063/1.4816395

  27. Rivière, J., Shokouhi, P., Guyer, R.A., Johnson, P.A.: A set of measures for the systematic classification of the nonlinear elastic behavior of disparate rocks. J. Geophys. Res. B: Solid Earth 120(3), 1587–1604 (2015). doi:10.1002/2014JB011718

    Article  Google Scholar 

  28. Haupert, S., Rivière, J., Anderson, B., Ohara, Y., Ulrich, T.J., Johnson, P.: Optimized dynamic acousto-elasticity applied to fatigue damage and stress corrosion cracking. J. Nondestr. Eval. 33(2), 226–238 (2014). doi:10.1007/s10921-014-0231-2

    Article  Google Scholar 

  29. Moradi-Marani, F., Kodjo, S.A., Rivard, P., Lamarche, C.P.: Nonlinear acoustic technique of time shift for evaluation of alkali-silica reaction damage in concrete structures. ACI Mater. J. 111(5), 581–592 (2014). doi:10.14359/51686728

    Google Scholar 

  30. Eiras, J.N., Vu, Q.A., Lott, M., Payá, J., Garnier, V., Payan, C.: Dynamic acousto-elastic test using continuous probe wave and transient vibration to investigate material nonlinearity. Ultrasonics 69, 29–37 (2016). doi:10.1016/j.ultras.2016.03.008, Available at http://linkinghub.elsevier.com/retrieve/pii/S0041624X16000597

  31. McCall, K., Guyer, R.: Equation of state and wave propagation in hysteretic nonlinear elastic materials. J. Geophys. Res. 99(B12), 23887–23897 (1994). Available at http://onlinelibrary.wiley.com/doi/10.1029/94JB01941/full

  32. Chen, J., Jayapalan, A.R., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010). doi:10.1016/j.cemconres.2010.01.003, Available at http://linkinghub.elsevier.com/retrieve/pii/S0008884610000050

  33. Guyer, R.A., McCall, K.R., Boitnott, G.N.: Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995). doi:10.1103/PhysRevLett.74.3491

  34. Haupert, S., Renaud, G., Rivière, J., Talmant, M., Johnson, P.A., Laugier, P.: High-accuracy acoustic detection of nonclassical component of material nonlinearity. J. Acoust. Soc. Am. 130(5) 2654 (2011). doi:10.1121/1.3641405, Available at http://www.lanl.gov/orgs/ees/ees11/geophysics/nonlinear/2011/HaupertJASA11.pdf

  35. Renaud, G., Talmant, M., Callé, S., Defontaine, M., Laugier, P.: Nonlinear elastodynamics in micro-inhomogeneous solids observed by head-wave based dynamic acoustoelastic testing. J. Acoust. Soc. Am. 130(6), 3583–3589 (2011). doi:10.1121/1.3652871, Available at http://www.ncbi.nlm.nih.gov/pubmed/22225015

  36. Vakhnenko, O.O., Vakhnenko, V.O., Shankland, T.J., TenCate, J.A.: Soft-ratchet modeling of slow dynamics in the nonlinear resonant response of sedimentary rocks. AIP Conf. Proc. 838, 120–123 (2006). doi:10.1063/1.2210331

    Article  Google Scholar 

  37. Guyer, R., Johnson, P.: Nonlinear Mesoscopic Elasticity, vol. 1. Wiley-VCH Verlag GmbH & Co. KGaA (2009)

  38. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM C666/C666M-03. Reapproved 2008 1–6 (2008). doi:10.1520/C0666, Available at http://www.ASTM.org

  39. JIS A1148-2001 Method of Test for Resistance of Concrete to Freezing and Thawing (2001): Available at http://kikakurui.com/a9/A9511-2009-01.html

  40. Kasparek, S., Palecki, S., Siebel, E.: Recommendations of RILEM TC 176?: test methods of frost resistance of concrete CIF-test-C apillary suction, I Nternal damage and F reeze-thaw test reference method and alternative methods a and b responsible author M .J . Setzer Editorial Committee? 29(1), 523–528

  41. Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM C143 (1), 1–4 (2015). doi:10.1520/C0143

  42. American Society of Testing Materials. Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method. ASTM C231/C231M-14 1–10 (2010). doi:10.1520/C0231

  43. Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. ASTM C215-14 1–7 (2014). doi:10.1520/C0215-08.2

  44. Huang, N., Shen, S.S.P.: Hilbert-Huang transform and its applications (2005). doi:10.1142/9789812703347, Available at http://ebooks.worldscinet.com/ISBN/9789812703347/9789812703347.html

  45. Cohen, L.: Time-frequency analysis: theory and applications (1995)

  46. Renaud, G., Callé, S., Defontaine, M.: Remote dynamic acoustoelastic testing: elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94(1), 18–21 (2009). doi:10.1063/1.3064137

    Article  Google Scholar 

  47. Renaud, G., Rivière, J., Haupert, S., Laugier, P.: Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy. J. Acoust. Soc. Am. 133(6), 3706–3718 (2013). doi:10.1121/1.4802909, Available at http://www.ncbi.nlm.nih.gov/pubmed/23742326

  48. TenCate, J.A., Smith, E., Guyer, R.A.: Universal slow dynamics in granular solids. Phys. Rev. Lett. 85(5), 1020–1023 (2000). doi:10.1103/PhysRevLett.85.1020

    Article  Google Scholar 

Download references

Acknowledgements

Maria Gabriela Moreno was supported through a Research Experience for Undergraduate (REU) award of Penn State’s College of Engineering. This support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Shokouhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Moreno, M.G., Riviere, J. et al. Impact-Based Nonlinear Acoustic Testing for Characterizing Distributed Damage in Concrete. J Nondestruct Eval 36, 51 (2017). https://doi.org/10.1007/s10921-017-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0428-2

Keywords

Navigation