Skip to main content
Log in

Automatic Detection of Annual Growth Units on Picea abies Logs Using Optical and X-Ray Techniques

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the number and location of annual growth units (GU) in Norway Spruce logs to have an information on the past growth of trees and thus a better knowledge of wood properties like density and knottiness. Two devices were used: an optical device which gives an accurate, description of the external log shape and a medical CT scanner which, in addition, gives information about the internal density of log. For each device, a specific method was developed to detect annual GU. The “optical method” was based on variations of the cross-section surface along the logs and the “X-ray method” on variations in the density profile. The optical method provided an accurate evaluation of the number of GU. The “X-ray method”, more sensitive to the presence of lammas shoots, generally overestimated the number of GU but provided a very good location of knotty areas inside the logs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. T. Kozlowski, Growth and development of trees, Vol. I, 1971, 443 p. Academic, New York.

  2. J.-M. Leban, A. Pizzi, S. Wieland, M. Zanetti, M. Properzi, and F. Pichelin, “X-Ray Microdensitometry Analysis of Vibration-Welded Wood,” J. Adhes. Sci. Technol. 18(6), 673–685 (2004).

    Article  Google Scholar 

  3. H. Polge, “Délimitation de 1’aubier et du bois de creur par analyse densitométrique de clichés radiographiques,” Ann Sci. For. 21(4), 607–623 (1964).

    Google Scholar 

  4. B. V. Funt and E. C. Bryant, “Detection of internal log defects by automatic interpretation of computer tomography images,” For. Prod. J. 37(1), 56–62 (1987).

    Google Scholar 

  5. A. Grönlund, S. Grundberg, and U. Grönlund, “The Swedish Stembank—an Unique Database for Different Silvicultural and Wood Properties,” in Proceedings of the First Workshop of IUFRO Working party S5.01-04 “Connection Between Silviculture and Wood Quality Through Modelling Approaches and Simulation Softwares,” edited by G. Nepveu, pp. 71–77, 1994, Hook, Sweden, June 13–17.

  6. S. Som, I. Svalbe, J. Davis, J. Grant, E. Gold, K. Tsui, and P. Wells, “Internal Scanning of Logs for Grade Evaluation and Defect Location,” in Digital Image Computing: Techniques and Applications (DICTA), pp. 408–413, 1995, Brisbane, Australia, December 6–8.

  7. S. M. Bhandarkar, T. D. Faust, and M. Tang, “CATALOG: A system for detection and rendering of internal log defects using computer tomography,” Mach. Vis. Appl. 11(4), 171–190 (1999).

    Article  Google Scholar 

  8. J.-P. Andreu and A. Rinnhofer, “Modeling of Internal Defects in Logs for value Optimization based on Industrial CT Scanning,” in Proceedings of the 5th International Conference on Image Processing and Scanning of Wood, edited by A. Rinnhofer, pp. 141–150, 2003, Bad Waltersdorf, Austria, March 23–26.

    Google Scholar 

  9. A. Rinnhofer, A. Petutschnigg, and J.-P. Andreu, “Internal log scanning for optimizing breakdown,” Comput. Electron Agric. 41, 7–21 (2003).

    Article  Google Scholar 

  10. L. A. Grace, Design and evaluation of an optical scanner-based log grading and sorting system for Scots Pine (Pinus Sylvestris L.) sawlogs, p. 30, 1994, The Swedish University of Agricultural Sciences, Department of forest Products. Dissertation –ISBN 91-576-4848-4.

  11. J.-P. Mongeau, R. Beauregard, and T. E. G. Harless, “Softwood Log Shape Modelling with Shadow Scanners,” Wood Fiber Sci. 25(3), 261–277 (1993).

    Google Scholar 

  12. J. Oja, S. Grundberg, and A. Grönlund, “Measuring the outer shape of Pinus sylvestris saw logs with an X-ray logs scanner,” Stand. J. For. Res. 13, 340–347 (1998).

    Google Scholar 

  13. S. Skatter, “Determination of cross-sectional shape of softwood logs from three X-ray projections using an elliptical model,” Holz als Roh- und Werkstoff 56, 179–186 (1998).

    Article  Google Scholar 

  14. S. Grundberg and A. Grönlund, “Feature Extraction with aid of an X-ray Log Scanner,” in Workshop 3rd IWSS, IUFRO S 5.04-10, 1998, Sweden, August 17–19.

  15. L. Saint-André, “Modélisation tridimensionnelle des profils de largeur de cerne dans un billon d’Epicéa commun (Picea abies Karst.) compte tenu de la mesure de son enveloppe externe et des caractéristique dendrométriques usuelles de 1’arbre d’origine,” in Doctoral Thesis (1998).

  16. S. Skatter and O. A. Høïbø, “Cross-sectional shape models of Scots pine (Pinus silvestris) and Norway Spruce (Picea abies),” Holz als Roh- und Werkstoff 56, 187–191 (1998).

    Article  Google Scholar 

  17. S. Skatter, O. A. Høïbø, and P. Gjerdrum, “Simulated yield in a sawmill using different measurement technologies,” Holz als Roh- und Werkstoff 56, 267–274 (1998).

    Article  Google Scholar 

  18. L. Saint-André and J.-M. Leban, “An elliptical model for tree ring shape in transverse section. Methodology and case study on Norway Spruce,” Holz als Roh- und Werkstoff 58, 368–374 (2000).

    Article  Google Scholar 

  19. L. Saint-André and J.-M. Leban, “A model for the pith position and the ring eccentricity in transverse sections of Norway spruce logs,” Holz als Roh- und Werkstoff 59(1–2), 137–144 (2001).

    Article  Google Scholar 

  20. L. Saint André, J.-M. Leban, and J.-C. Herve, “Modelling the number of rings in individual logs,” Scand J. For. 15, 135–143 (2000).

    Article  Google Scholar 

  21. B. V. Funt, “A Computer Vision System that Analyzes CT-scans of Sawlogs,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 175–177, 1985, San Francisco, Ca.

  22. D. L. Schmoldt, D. P. Zhu, and R. W. Conners, “Nondestructive Evaluation of Hardwood Logs Using Automated Interpretation of CT Images,” Rev. Prog. Quant. Nondestr. Eval. 12, 2257–2264 (1993).

    Google Scholar 

  23. D. L. Schmoldt, J. He, and A. L. Abbott, “Automated labeling of log features in CT imagery of multiple hardwood species,” Wood Fiber Sci. 32(3), 287–300 (2000).

    Google Scholar 

  24. S. Grunberg, “An X-ray LogScanner—A tool for control of the sawmill process,” in Doctoral Thesis, 1999, Lule Univ. of Technology, ISSN 1402–1544.

  25. J. Oja, “X-ray Measurement of Properties of Saw Logs,” in Doctoral Thesis, 1999, Lule Univ. of Technology, ISSN 1402–1544.

  26. E. Sarigul, A. L. Abbott, and D. L. Schmoldt, “Rule-driven detection in CT images of hardwood logs,” Comput. Electron. Agric. 41, 101–119 (2003).

    Article  Google Scholar 

  27. K. Flood, P.-E. Danielsson, and M. Magnusson Seger, “On 3D Segmentation of Knots in 3D-volume data Acquired from X-Ray Linear Cone-Beam Scanning,” in Proceedings of the 5th International Conference on Image Processing and Scanning of Wood, edited by A. Rinnhafer, pp. 151–159, 2003, Bad Waltersdorf, Austria, March 23–26.

  28. L. A. Grace, Using Optical Log Scanners to determine log properties: Initial results from SCA’s Munksund sawmill, p. 56, 1993, Swedish University of Agricultural Sciences, Department of Forest Products, Report No. 232, ISSN 0348-4599.

  29. L. A. Grace, Evaluating a prototype log sorting system for use in pine sawmills, p. 43, 1993, Swedish University of Agricultural Sciences, Department of Forest Products, Report No. 237, ISSN 0348-4599.

  30. L. A. Grace, “Exploring the potential of using optical log scanners for predicting lumber grade,” For. Prod. J. 43(10), 45–50 (1993).

    Google Scholar 

  31. L. O. Lindgren, “Medical CAT-scanning: X-ray absorption coefficients, CT-numbers, and their relation to wood density,” Wood Sci. Technol. 25, 341–349 (1991).

    Google Scholar 

  32. S. Grundberg and A. Gränlund, “Methods for reducing data when scanning for internal log defects,” in Proceedings of the 4th International Conference on Scanning Technology in the Wood Industry, 1991, San Francisco, CA.

  33. P. Lambert, Realisation d’un système de mesure d’états de surface pour le matériau bois –Profits, p. 96, 1985, Rapport de DBA, Université Nancy 1, U.E.R Sciences de la matiére, Laboratoire d’automatique et de commande numérique.

  34. J. Max, Methodes et techniques de traitement du signal et applications aux mesures physiques-Tome 1, edited by Masson, Paris, p. 338, 1981, 3ième Edition, ISBN 2-225-65670-3.

  35. J. Max, Methodes et techniques de traitement du signal et applications aux mesures physiques-Tome 2, edited by Masson, p. 238, 1981, 3ième Edition, ISBN 2-225-65660-6.

  36. F. Longuetaud, J.-M. Leban, F. Mothe, E. Kerrien, and M.-O. Berger, “Automatic detection of pith on CT images of Spruce logs,” Comput. Elect. Agric. 44(2), 107–119 (2004).

    Article  Google Scholar 

  37. F, Longuetaud, F. Mothe, and J.-M. Leban, “Automatic detection of the heartwood/sapwood boundary on series of CT images of Norway spruce (Picea abies) logs,” Comput. Electron. Agric. Submitted (2004).

  38. W. S. Cleveland, E. Grosse, and M.-J. Shyu, “A Package of C and Fortran Routines for Fitting Local Regression Models, in Technical report, 1992, Bell Labs.

  39. W. S. Cleveland and C. Loader, Smoothing by Local Regression: Principles and Methods. Statistical Theory and Computational Aspects of Smoothing, pp. 10–49, 1996, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleur Longuetaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longuetaud, F., Saint-André, L. & Leban, JM. Automatic Detection of Annual Growth Units on Picea abies Logs Using Optical and X-Ray Techniques. J Nondestruct Eval 24, 29–43 (2005). https://doi.org/10.1007/s10921-005-6658-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-005-6658-8

Keywords

Navigation