Skip to main content

Advertisement

Log in

A Systematic Review on Orthopedic Simulators for Psycho-Motor Skill and Surgical Procedure Training

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Precise simulators can replicate complete understanding of the models. In this survey, we focus on orthopedic simulators that are not only in replicating real-world models but also in educating with complete procedure: surgical, for instance. It covers 18 hip replacement, three-knee replacement, three facial surgeries, one spine surgery and six orthopedic psycho-motor skills training and assessment-based simulators. We also provide comparative studies and highlight current trends and possible challenges. We observed that orthopedic training methodologies have undergone a paradigm shift. This means that the simulators replace the use of sensitive hospital settings for training and skill acquisition. In brief, we address classified overview on existing orthopedic simulators: physical and Virtual Reality (VR)-based simulators. Key steps to develop computer-assisted, VR-based simulator are explored. Experts’ opinion on the use of simulation technologies in the field of orthopedics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Materialise. http://www.materialise.com/en/medical/mimics-innovation-suite

  2. EdHeads Hip Resurfacing Online Game (2007), available at: https://edheads.site-ym.com/page/hip_resurfacing

  3. About the BoneDoc Simulator. http://bonedoc.org/about.html

  4. ATI Multi-Axis Force/Torque Sensors. http://www.ati-ia.com/products/ft/sensors.aspx

  5. Sawbone. Orthopedic models. https://www.sawbones.com/products/orthopaedic-models.html

  6. Construct validity: the degree to which the simulator can assess the technical skills of the trainees.

  7. Face validity: degree to which a simulator appears similar to the real procedure.

  8. Transfer validity: extent to which the simulator learned skills are transferred into improved skill in-vivo.

  9. Sewmac ArthoVision. http://www.swemac.com/simulators/arthrovision

  10. Sewmac TraumaVision. http://www.swemac.com/simulators/traumavision

  11. OSSimTech Sim-orthoTM. https://ossimtech.com/en-us/Simulators

  12. VirtaMed ArtroSTM. https://www.virtamed.com/en/medical-training-simulators/arthros/

  13. Blender3D. https://www.blender.org/

  14. 3D slicer. https://www.slicer.org/

  15. 3D doctor. http://www.ablesw.com/3d-doctor/

  16. 3D systems. Geomagic Touch. https://www.3dsystems.com/haptics-devices/touch

  17. 3D systems. Geomagic Touch X. https://www.3dsystems.com/haptics-devices/geomagic-touch-x

  18. Force Dimension. Omega 3. http://www.forcedimension.com/products/omega-3/specifications

  19. Force Dimension. Omega 6. http://www.forcedimension.com/products/omega-6/specifications

  20. Ascension, 3D Guidance trackSTAR and drivebay 6DoF. https://www.ascension-tech.com/products/trakstar-drivebay/

  21. Polhemus FASTRAK. https://polhemus.com/motion-tracking/all-trackers/fastrak

  22. Polhemus G4. https://polhemus.com/motion-tracking/all-trackers/g4

  23. NDI Aurora V3. https://www.ndigital.com/ndi-introduces-the-aurora-v3-electromagnetic-tracking-system/

  24. Northern Digital Inc., Polaris optical tracking system. https://www.ndigital.com/medical/products/polaris-family/

References

  1. Torkington, J., Smith, S. G., Rees, B. I., and Darzi, A., The role of simulation in surgical training. Ann. R. Coll. Surg. Engl. 82(2):88–94, 2000.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Akhtar, K. S. N., Chen, A., Standfield, N. J., and Gupte, C. M., The role of simulation in developing surgical skills. Curr. Rev. Muscoskelet. Med. 7(2):155–160, 2014.

    Article  CAS  Google Scholar 

  3. Ziv, A., Small, S.D., and Wolpe, P.R., Patient safety and simulation-based medical education. Med. Teach. 22(5):489–495, 2000.

    Article  Google Scholar 

  4. Mabrey, Jay D., Reinig, Karl D., and Dilworth Cannon, W., Virtual reality in orthopaedics: is it a reality. Clin. Orthop. Relat. Res. 468(10):2586–2591, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohan, A., and Proctor, M., Virtual reality – a ’play station’ of the future A review of virtual reality and orthopaedics. Acta Orthop. Belg. 72(6):659–663, 2006.

    PubMed  Google Scholar 

  6. Gaba, D.M., The future vision of simulation in health care. Qual. Saf. Health Care 13(suppl 1):i2–i10, 2004.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Windsor, J.A., Role of simulation in surgical education and training. ANZ J. Surg. 79(3):127–132, 2009.

    Article  PubMed  Google Scholar 

  8. Riaz, A. A., and Alexander, J. F., The role and validity of surgical simulation. Int. Surg. 100(2):155–160, 2015.

    Google Scholar 

  9. Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Does virtual-reality training on orthopaedic simulators improve performance in the operating room? In: Science and information conference (SAI), pages 51–54. IEEE, 2015

  10. G Lopez, R., Wright, D., Martin, J., Bracey, J.D., and Gupta, R., A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection. J. Bone Joint Surg. Am. 97(8):659–666, 2015.

    Article  Google Scholar 

  11. Stirling, E.R.B., Lewis, T.L., and Ferran, N.A., Surgical skills simulation in trauma and orthopaedic training. J. Orthop. Surg. Res. 9(1):126–135, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Johns, B.D., The creation and validation of an augmented reality orthopaedic drilling simulator for surgical training. PhD thesis: University of Iowa, 2008.

    Google Scholar 

  13. Issenberg, B.S., McGaghie, W.C., Hart, I.R., Mayer, J.W., Felner, J.M., Petrusa, E.R., Waugh, R.A., Brown, D.D., Safford, R.R., and Gessner, I.H., Simulation technology for health care professional skills training and assessment. Jama 282(9):861–866, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Vankipuram, M., Kahol, K., McLaren, A., and Panchanathan, S., A virtual reality simulator for orthopedic basic skills: A design and validation study. J. Biomed. Inform. 43(5):661–668, 2010.

    Article  PubMed  Google Scholar 

  15. Madan, S.S., and Pai, D.R., Role of simulation in arthroscopy training. Simul. Healthc. 9(2):127–135, 2014.

    Article  PubMed  Google Scholar 

  16. Pedowitz, R.A., Esch, J., and Snyder, S., Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy: The J. Arthroscopic and Related Surgery 18(6):1–6, 2002.

    Article  Google Scholar 

  17. Thomas, G.W., Anderson, D.D., Karam, M.D., Johns, B., Murillo, M.J., and ans Lawrence, S.R.: A flexible orthopaedic trauma surgery box skills trainer. Abstract and poster presented at the 37th Annual Meeting of the American Society of Biomechanics, Omaha, NE, 3, 2013

  18. Chou, Y.-J., Sun, S.-P., and Liu, H.-H., Calcaneal osteotomy preoperative planning system with 3d full-sized computer-assisted technology. J. Med. Syst. 35(5):755–763, 2011.

    Article  PubMed  Google Scholar 

  19. Wagner, A., Ploder, O., Enislidis, G., Truppe, M., and Ewers, R., Image-guided surgery. Int. J. Oral Maxillofac. Surg. 25(2):147–151, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Comaneanu, R.M., Tarcolea, M., Vlasceanu, D., and Cotrut, M.C., Virtual 3d reconstruction, diagnosis and surgical planning with mimics software. Int. J. Nano Biomater. 4(1):69–77, 2012.

    Article  Google Scholar 

  21. Kyselova, O., Marchenko, A., Nastenko, I., Rudenko, K., and Mamalyha, A.: The use of three – dimensional modeling system mimics in studying process of medical-engineering specialty. In: Proceedings of International Conference ”Biomedical Engineering, pages 224–227. Biomedical Engineering Institute of Kaunas University of Technology, Kaunas, 2010.

  22. Materialise: Mimics student edition course work. Minics, 2015

  23. O’Toole, R.V., Jaramaz, B., DiGioia, A.M., Visnic, C.D., and Reid, R.H., Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput. Biol. Med. 25(2):183188–186191, 1995.

    Google Scholar 

  24. Seel, M.J., Hafez, M.A., Eckman, K., Jaramaz, B., Davidson, D., and DiGioia III, A.M., Three – dimensional planning and virtual radiographs in revision total hip arthroplasty for instability. Clin. Orthop. Relat. Res. 442:35–38, 2006.

    PubMed  Google Scholar 

  25. Jun, Y., and Park, S., Polygon-based 3 D surgical planning system for hip operation. Int. J. Precis. Eng. Manuf. 12(1):157–160, 2011.

    Article  Google Scholar 

  26. Dick, C., Georgii, J., Burgkart, R., and Westermann, R.: A 3 D simulation system for hip joint replacement planning. In: World congress on medical physics and biomedical engineering, September 7-12, 2009, pp. 363–366. Springer, Munich, 2010.

  27. Koch, R.M., Roth, M.S.H., Gross, M.H., Zimmermann, A.P., and Sailer, H.F.: A framework for facial surgery simulation. In: Proceedings of the 18th spring conference on Computer graphics, pp. 33–42 ACM, 2002

  28. Schmidt, J., Berti, G., Fingberg, J., Cao, J., and Wollny, G.: A finite element based tool chain for the planning and simulation of maxillo-facial surgery. Sciences New York, 1–17, 2004

  29. Digioia, A.M., Jaramaz, B., Nikou, C., Labarca, R.S., Moody, J.E., and Colgan, B.D., Surgical navigation for total hip replacement with the use of Hipnav. Oper. Tech. Orthop. 10(1):3–8, 2000.

    Article  Google Scholar 

  30. O’Toole, R. V., Colgan, B., and Kischel12, E.: Hipnav: pre-operative planning and intra-operative navigational guidance for acetabular implant placement in total hip replacement surgery. In: Proceedings of the Computer Assisted Orthopaedic Surgery Symposium, Bern, Switzerland, pp. 3–8, 1996

  31. DiGioia, A.M., Jaramaz, B., Blackwell, M., Simon, D.A., Morgan, F., Moody, J.E., Nikou, C., Colgan, B.D., Aston, C.A., and LaBarca, R.S.: An image guided navigation system for accurate alignment in total hip replacement surgery. The Robotics Institute Carnegie Mellon University, 1998

  32. Sabri, H., Cowan, B., Kapralos, B., Porte, M., Backstein, D., and Dubrowskie, A., Serious games for knee replacement surgery procedure education and training. Procedia. Soc. Behav. Sci. 2(2):3483–3488, 2010.

    Article  Google Scholar 

  33. Cowan, B.B.D., Total knee replacement serious game for surgical education and training. PhD thesis: University of Ontario Institute of Technology (Canada, 2012.

    Google Scholar 

  34. Półjanowicz, W., Roszak, M., Kowalewski, W., and Kołodziejczak, B., Using a virtual learning environment as a key to the development of innovative medical education. Studies in Logic, Grammar and Rhetoric 39(1):123–142, 2014.

    Article  Google Scholar 

  35. Blyth, P., Stott, N. S., and Anderson, I. A., A simulation-based training system for hip fracture fixation for use within the hospital environment. Injury 38(10):1197–1203, 2007.

    Article  PubMed  CAS  Google Scholar 

  36. Tsai, M.-D., Hsieh, M.-S., and Jou, S.-B., Virtual reality orthopedic surgery simulator. Comput. Biol. Med. 31(5):333–351, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Delp, S.L., Loan, P.J., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8):757–767, 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Blyth, Dr P.: Virtual reality simulation of hip surgery. PhD thesis, Bioengineering Institute University of Auckland, 2008

  39. Blyth, P., Stott, N. S., and Anderson, I. A., Virtual reality assessment of technical skill using the Bonedoc DHS simulator. Injury 39(10):1127–1133, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Blyth, P., and Sehgal, P.: Use of the Bonedoc DHS simulator by fifth year medical students: A pilot study. In: Proceedings of ASCILITE-Australian society for computers in learning in tertiary education annual conference, 74–80, 2009

  41. Pransky, J., ROBODOC - surgical robot success story. Industrial Robot: An International Journal 24(3): 231–233, 1997.

    Article  Google Scholar 

  42. Assassi, L., Charbonnier, C., Schmid, J., Volino, P., and Magnenat-Thalmann, N., From MRI to anatomical simulation of the hip joint. Comput. Anim. Virtual Worlds 20(1):53–66, 2009.

    Article  Google Scholar 

  43. Dev, P., Fellingham, L.L., Vassiliadis, A., Woolson, S.T., White, D.N., and Young, S.L.: 3D graphics for interactive surgical simulation and implant design. In: 28th annual technical symposium, pp. 52–57. International Society for Optics and Photonics, 1984

  44. Seth, T., Chaudhary, V., Buyea, C., and Bone, L.: A virtual interactive navigation system for orthopaedic surgical interventions. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 71. ACM, 2011

  45. Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., and Pirela-Cruz, M.: Collaborative virtual environments for orthopedic surgery. In: 2013 IEEE international conference on automation science and engineering CASE, pp. 133–137. IEEE, 2013

  46. Fuerst, D., Hollensteiner, M., and Schrempf, A.: Assessment parameters for a novel simulator in minimally invasive spine surgery. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 5110–5113. IEEE, 2015

  47. Vankipuram, M., Haptic rendering of volumetric data through perceptual parameterization. PhD thesis: Arizona state university, 2008.

    Google Scholar 

  48. Tsai, M.D., Hsieh, M.S., and Tsai, C.H., Bone drilling haptic interaction for orthopedic surgical simulator. Comput. Biol. Med. 37(12):1709–1718, 2007.

    Article  PubMed  Google Scholar 

  49. Hsish, M.S., Tsai, M.D., and Yeh, Y.D., An amputation simulator with bone sawing haptic interaction. Biomed Eng Appl Basis Commun 18(05):229–236, 2006.

    Article  Google Scholar 

  50. Wang, Q., Qin, J., Wang, W., Shan, J., Zhang, J., Liu, X., and Heng, P.-A.: Haptic rendering of drilling process in orthopedic surgical simulation based on the volumetric object. In: 2015 IEEE international conference on digital signal processing (DSP), pp. 1098–1101. IEEE, 2015

  51. Aziz, M.H., and Ayub, M.A., Measurement of forces and torques during non homogeneous material drilling operation. Int. J. Adv. Sci. Eng. Inf. Technol. 1(1):92–97, 2011.

    Article  Google Scholar 

  52. Boiadjiev, G., Kastelov, R., Boiadjiev, T., Delchev, K., and Zagurski, K., Automatic bone drilling-more precise, reliable and safe manipulation in the orthopaedic surgery. J. Theor. Appl. Mech. 46(2):51–64, 2016.

    Article  Google Scholar 

  53. Pinto, M.L., Sabater, J.M., Sofrony, J., Badesa, F.J., Rodriguez, J., and Garcia, N.: Haptic simulator for training of total knee replacement. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 221–226. IEEE, 2010

  54. Lin, Y., Wang, X., Fule, W.U., Chen, X., Wang, C., and Shen, G., Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. J. Biomed. Inform. 48:122–129, 2014.

    Article  PubMed  Google Scholar 

  55. Rambani, R., Ward, J., and Viant, W., Desktop-based computer-assisted orthopedic training system for spinal surgery. J. Surg. Educ. 71(6):805–809, 2014.

    Article  PubMed  Google Scholar 

  56. Rambani, R., Viant, W., Ward, J., and Mohsen, A., Computer-assisted orthopedic training system for fracture fixation. J. Surg. Educ. 70(3):304–308, 2013.

    Article  PubMed  Google Scholar 

  57. Barrow, A., Akhtar, K., Gupte, C., and Bello, F., Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery. Stud. Health Technol. Inform. 184:43–47, 2013.

    PubMed  Google Scholar 

  58. Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N.H., and Girod, S.: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 26(6), 2006

  59. Goswami, B., and Misra, S.K.R., 3D modeling of X-ray images: A review. Int. J. Comput. Appl. 132(7): 40–46, 2015.

    Google Scholar 

  60. Elvins, T.T., A survey of algorithms for volume visualization. ACM Siggraph Comput. Graph. 26(3):194–201, 1992.

    Article  Google Scholar 

  61. Qi, Z., Eagleson, R., and Peters, T.M., Volume visualization: a technical overview with a focus on medical applications. J. Digit. Imaging 24(4):640–664, 2011.

    Article  Google Scholar 

  62. Lorensen, W.E., and Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, volume 21, pages 163–169. ACM, 1987

  63. Salisbury, K., Conti, F., and Barbagli, F., Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2):24–32, 2004.

    Article  PubMed  Google Scholar 

  64. Kockara, S., Halic, T., Iqbal, K., Bayrak, C., and Rowe, R.: Collision detection: A survey. In IEEE international conference on systems, man and cybernetics, 2007. ISIC., pp. 4046–4051. IEEE, 2007

  65. Markelj, P., Tomaževič, D., Likar, B., and Pernuš, F., A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3):642–661, 2012.

    Article  PubMed  CAS  Google Scholar 

  66. Hill, D.L.G., Batchelor, P.G., Holden, M., and Hawkes, D.J., Medical image registration. Phys. Med. Biol. 46(3):R1, 2001.

    Article  PubMed  CAS  Google Scholar 

  67. Escobar-Castillejos, D., Noguez, J., Neri, L., Magana, A., and Benes, B.: A review of simulators with haptic devices for medical training. Journal of medical systems, 40(4), 2016

  68. Issenberg, S.B.: The scope of simulation-based healthcare education, 2006

  69. Pedowitz, R.A., and Marsh, L.J., Motor skills training in orthopaedic surgery: A paradigm shift toward a simulation-based educational curriculum. J. Am. Acad. Orthop. Surg. 20(7):407–409, 2012.

    Article  PubMed  Google Scholar 

  70. Hohn, E.A., Brooks, A.G., Leasure, J., Camisa, W., van Warmerdam, J., Kondrashov, D., Montgomery, W., and McGann, W., Development of a surgical skills curriculum for the training and assessment of manual skills in orthopedic surgical residents. J. Surg. Educ. 72(1):47–52, 2015.

    Article  PubMed  Google Scholar 

  71. Blyth, P., Anderson, I.A., and Stott, S.N., Virtual reality simulators in orthopedic surgery: What do the surgeons think? J. Surg. Res. 131(1):133–139, 2006.

    Article  PubMed  Google Scholar 

  72. Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Can virtual-reality simulators assess experience and skill level of orthopaedic surgeons?. In: Science and Information Conference (SAI), 2015, pp. 105–108. IEEE, 2015

  73. Kho, J.Y., Johns, B.D., Thomas, G.W., Karam, M.D., Marsh, L.J., and Anderson, D.D., A hybrid reality radiation-free simulator for teaching wire navigation skills. J. Orthop. Trauma 29(10):e385, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Waterman, B.R., Martin, K.D., Cameron, K.L., Owens, B.D., and Belmont, J.P., Simulation training improves surgical proficiency and safety during diagnostic shoulder arthroscopy performed by residents. Orthopedics 39(3):e479–e485, 2016.

    Article  PubMed  Google Scholar 

  75. Eversbusch, A., and Grantcharov, T.P., Learning curves and impact of psychomotor training on performance in simulated colonoscopy: a randomized trial using a virtual reality endoscopy trainer. Surgical Endoscopy And Other Interventional Techniques 18(10):1514–1518, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Ministry of Electronics and Information Technology (MeitY), New Delhi for granting Visvesvaraya Ph.D. fellowship (file no.: PhD-MLA\4(34)\201-1 (05/11/2015)).

Author information

Authors and Affiliations

Authors

Contributions

First author: Ruikar, Darshan collected materials and prepared the draft under the supervision of Profs. Hegadi, R.S. and Santosh, K.C. The manuscript has gone through several rounds of internal revisions with Prof. Santosh, K.C. in the presence of remaining authors.

Corresponding author

Correspondence to K. C. Santosh.

Ethics declarations

Conflict of interests

The authors declare that this article content has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruikar, D.D., Hegadi, R.S. & Santosh, K.C. A Systematic Review on Orthopedic Simulators for Psycho-Motor Skill and Surgical Procedure Training. J Med Syst 42, 168 (2018). https://doi.org/10.1007/s10916-018-1019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-018-1019-1

Keywords

Navigation