Skip to main content
Log in

Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The study aimed to develop a real-time electromyography (EMG) signal acquiring and processing device that can acquire signal during electrical stimulation. Since electrical stimulation output can affect EMG signal acquisition, to integrate the two elements into one system, EMG signal transmitting and processing method has to be modified. The whole system was designed in a user-friendly and flexible manner. For EMG signal processing, the system applied Altera Field Programmable Gate Array (FPGA) as the core to instantly process real-time hybrid EMG signal and output the isolated signal in a highly efficient way. The system used the power spectral density to evaluate the accuracy of signal processing, and the cross correlation showed that the delay of real-time processing was only 250 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Peckham, P., and Knutson, J., Functional electrical stimulations for neuromuscular applications. Annu. Rev. Biomed. Eng. 7(1):327–360, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Sheffler, L.R., and Chae, J., Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35:562–590, 2007.

    Article  PubMed  Google Scholar 

  3. Chen, S.C., Luh, J.J., Chen, Y.L., Liu, C.L., Yu, C.H., Wu, H.C., Chen, C.H., Handa, Y., Young, S.T., Kuo, T.S., Lai, J.S., Development and application of a versatile FES system. J. Med. Biol. Eng. 24(1):37–43, 2004.

    Google Scholar 

  4. Yuan, B., Sun, G., Gomez, J., Ikemoto, Y., Gonzarlez, M.C., Acharya, U.R., Yu, W., Ino, S., The Effect of an Auxiliary Stimulation on Motor Function Restoration by FES. J. Med. Syst. 35(5):855–861, 2011.

    Article  PubMed  Google Scholar 

  5. Liberson, W.T., Holmquest, H.J., Scot, D., Dow, M., Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42:101–105, 1961.

    CAS  PubMed  Google Scholar 

  6. Moe, J.H., and Post, H.W., Functional electrical stimulation for ambulation in Hemiplegia. Lancet 82:285–288, 1962.

    CAS  Google Scholar 

  7. Inobe, J., and Kato, T., Effectiveness of finger-equipped electrode (FEE)-triggered electrical stimulation improving chronic stroke patients with severe hemiplegia. Brain Inj. 27:114–119, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Thrasher, T.A., Zivanovic, V., McIlroy, W., Popovic, M.R., Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil. Neural Repair 22:706–714, 2008.

    Article  PubMed  Google Scholar 

  9. Rakos, M., Freudenschuss, B., Girsch, W., Hofer, C., Kaus, J., Meiners, T., Paternostro, T., Mayr, W., Electromyogram-controlled functional electrical stimulation for treatment of the paralyzed upper extremity. Artif. Organs 23:466–469, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Nekoukar, V., and Erfanian, A., A decentralized modular control framework for robust control of FES-activated walker-assisted paraplegic walking using terminal sliding mode and fuzzy logic control. IEEE Trans. Biomed. Eng. 59:10, 2012.

    Article  Google Scholar 

  11. Pereira, S., Mehta, S., McIntyre, A., Functional electrical stimulation for improving gait in persons with chronic stroke. Top. Stroke Rehabil. 19:491–498, 2012.

    Article  PubMed  Google Scholar 

  12. Popovic, M.R., Keller, T., Pappas, I.P.I., Dietz, V., Morari, M., Surface-stimulation technology for grasping and walking neuroprostheses. IEEE Eng. Med. Biol. Mag. 20:82–93, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, M.Y., Kim, J.H., Lee, J.U., Yoon, N.M., Kim, B., Kim, J., The effects of functional electrical stimulation on balance of stroke patients in the standing posture. J. Phys. Ther. Sci. 24(1):77–81, 2012.

    Article  Google Scholar 

  14. Kunkel, D., Pickering, R.M., Burnett, M., Littlewood, J., Burridge, J.H., Functional electrical stimulation with exercises for standing balance and weight transfer in acute stroke patients: a feasibility randomized controlled trial. Neuromodulation 16:1525–1403, 2013.

    Article  Google Scholar 

  15. Naik, G.R., and Kumar, D.K., Identification of hand and finger movements using multi run ICA of surface electromyogram. J. Med. Syst. 36(2):841–851, 2012.

    Article  PubMed  Google Scholar 

  16. Tkach, D., Huang, H., Kuiken, T.A., Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7(21):7–21, 2010.

    Google Scholar 

  17. Subasi, A., and Kiymik, M.K., Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Syst. 34(4):777–785, 2010.

    Article  PubMed  Google Scholar 

  18. Al-Mulla, M.R., and Sepulveda, F., Super wavelet for sEMG signal extraction during dynamic fatiguing contractions. J. Med. Syst. 39(1):1–9, 2015.

    Article  Google Scholar 

  19. Chen, C.C., He, Z.C., Hsueh, Y.H., An EMG feedback control functional electrical stimulation cycling system. J. Sign. Process. Syst. Sign. Image Video Technol. 64:195–203, 2011.

    Article  Google Scholar 

  20. Gokgoz, E., and Subasi, A., Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J. Med. Syst. 38(4):1–10, 2014.

    Article  Google Scholar 

  21. Winslow, J., Jacobs, P.L., Tepavac, D., Fatigue compensation during FES using surface EMG. J. Electromyogr. Kinesiol. 13:555–568, 2003.

    Article  PubMed  Google Scholar 

  22. Keller, T., Curt, A., Popovic, M.R., Signer, A., Dietz, V., Grasping in high lesioned tetraplegic subjects using the EMG controlled neuroprosthesis. Neurorehabilitation 10:251–255, 1998.

    Article  Google Scholar 

  23. Langzama, E., Isakovb, E., Mizrahi, J., Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation. J. Neuroeng. Rehabil. 3:27, 2006.

    Article  Google Scholar 

  24. Langzama, E., Nemirovskyc, Y., Isakovb, E., Mizrahi, J., Muscle enhancement using closed-loop electrical stimulation: volitional versus induced torque. J. Electromyogr. Kinesiol. 17:275–284, 2007.

    Article  Google Scholar 

  25. Yeom, H., and Chang, Y.H., Autogenic EMG controlled functional electrical stimulation for ankle dorsiflexion control. J. Neurosci. Methods 193:118–125, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Yeom, H., Park, H., Chang, Y.H., Park, Y., Lee, K.J., Stimulus artifact suppression using the stimulation synchronous adaptive impulse correlated filter for surface EMG application. J. Electr. Eng. Technol. 7(3):451–458, 2012.

    Article  Google Scholar 

  27. Keller, T., and Popovic, M.R., Stimulation artifact removal algorithm for real-time surface EMG applications. In: Proceedings 7th Vienna International Workshop on Functional Electrical Stimulation, pp. 118–121 (2001)

  28. Beck, T.W., Housh, T.J., Cramer, J.T., Weir, J.P., Johnson, G.O., Coburn, J.W., Malek, M.H., Mielke, M., Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. BioMedical Eng. OnLine 4(1):67, 2005.

    Article  Google Scholar 

  29. Soares, S.B., Coelho, R.R., Nadal, J.: The use of cross correlation function in onset detection of electromyographic signals. InBiosignals and Biorobotics Conference (BRC.), pp. 1-5, 2013

Download references

Acknowledgments

The authors would like to express their deepest gratefulness to Professor Chun-Yu Yeh of School of Physical Therapy, Chung Shan Medical University Taichung, Taiwan, for the views of clinical EMG signal. The authors also would like to thanks National Chip Implementation Center (CIC) and National Center for High-performance Computing (NCHC) of NARL (Nation Applied Research Laboratories), Taiwan, for providing computational and tools resources and storage resources. This research was partially supported by National Science Council under grant NSC 99-2321-B-224 -001 and 100-2321-B-224 -001. This study was also partial supported by grants from Ministry of Science and Technology, Taiwan, under grant number MOST 103-2221-E-224 -014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Hsin Hsueh.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsueh, YH., Yin, C. & Chen, YH. Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation. J Med Syst 39, 88 (2015). https://doi.org/10.1007/s10916-015-0267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0267-6

Keywords

Navigation