Skip to main content

Advertisement

Log in

Muscle Fatigue Detection in EMG Using Time–Frequency Methods, ICA and Neural Networks

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The electromyography (EMG) signals give information about different features of muscle function. Real-time measurements of EMG have been used to observe the dissociation between the electrical and mechanical measures that occurs with fatigue. The purpose of this study was to detect fatigue of biceps brachia muscle using time–frequency methods and independent component analysis (ICA). In order to realize this aim, EMG activity obtained from activated muscle during a phasic voluntary movement was recorded for 14 healthy young persons and EMG signals were observed in time–frequency domain for determination of fatigue. Time–frequency methods are used for the processing of signals that are non-stationary and time varying. The EMG contains transient signals related to muscle activity. The proposed method for the detection of muscle fatigue is automated by using artificial neural networks (ANN). The results show that ANN with ICA separates EMG signals from fresh and fatigued muscles, hence providing a visualization of the onset of fatigue over time. The system is adaptable to different subjects and conditions since the techniques used are not subject or workload regime specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mathiassen, S. E., The influence of exercise/rest schedule on the physiological and psychophysical response to isometric shoulder–neck exercise. Eur. J. Appl. Physiol. 67:528–539, 1993. doi:10.1007/BF00241650.

    Article  Google Scholar 

  2. Barnahart, S., Demers, P. A., Miller, M., Longstreth, W. T., and Rosenstock, L., Carpal tunnel syndrome among ski manufacturing workers. Scand. J. Work Environ. Health. 17:46–52, 1991.

    Google Scholar 

  3. Nussbaum, M., Clarc, L. L., Lanza, M. A., and Rice, K. M., Fatigue and endurance limits during intermittent overhead work. Am. Ind. Hyg. Assoc. J. 62:446–456, 2001. doi:10.1202/0002-8894(2001)062<0446:FAELDI>2.0.CO;2.

    Google Scholar 

  4. Roman-Liu, D., Tokarski, T., and Wojcik, K., Quantitative assessment of upper limb muscle fatigue depending on the conditions of repetitive task load.. J. Electromyogr. Kinesiol. 14:671–682, 2004. doi:10.1016/j.jelekin.2004.04.002.

    Article  Google Scholar 

  5. Moshou, D., Hostens, I., Papaioannou, G., and Ramon, H., Dynamic muscle fatigue detection using self-organizing maps.. Appl. Soft Comput. 5:391–398, 2005. doi:10.1016/j.asoc.2004.09.001.

    Article  Google Scholar 

  6. Xie, H., and Wang, Z., Mean frequency derived via Hilbert–Huang transform with application to fatigue EMG signal analysis. Comput. Methods Programs Biomed. 8 (2)114–120, 2006. doi:10.1016/j.cmpb.2006.02.009.

    Article  Google Scholar 

  7. Hedayatpour, N., Arendt-Nielsen, L., and Farina, D., Non-uniform electromyographic activity during fatigue and recovery of the vastus medialis and lateralis muscles.. J. Electromyogr. Kinesiol. 18 (3)390–396, 2008. doi:10.1016/j.jelekin.2006.12.004.

    Article  Google Scholar 

  8. Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., and Malek, M. H., Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii.. J. Electromyogr. Kinesiol. 15:190–199, 2005. doi:10.1016/j.jelekin.2004.08.007.

    Article  Google Scholar 

  9. Hostens, I., Seghers, J., Spaepen, A., and Ramon, H., Validation of the wavelet spectral estimation technique in Biceps Brachii and Brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions. J. Electromyogr. Kinesiol. 14:205–215, 2004. doi:10.1016/S1050-6411(03)00101-9.

    Article  Google Scholar 

  10. Kumar, D. K., Pah, N. D., and Bradley, A., Wavelet Analysis of Surface Electromyography to Determine Muscle Fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 11 (4)400–406, 2003. doi:10.1109/TNSRE.2003.819901.

    Article  Google Scholar 

  11. Linssen, W. H. J. P., Stegeman, D. F., Joosten, E. M. G., van horst, M. A., Binkhorst, R. A., and Notermans, S. L. H., Variability and interrelationship of surface EMG parameters during local muscle fatigue. Muscle Nerve. 16 (8)849–856, 1993. doi:10.1002/mus.880160808.

    Article  Google Scholar 

  12. Karlsson, S., Yu, J., and Akay, M., Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods.. IEEE Trans. Biomed. Eng. 46:670–684, 1999. doi:10.1109/10.764944.

    Article  Google Scholar 

  13. Akay, M., Introduction: wavelets in biomedical engineering. Ann. Biomed. Eng. 23:531–542, 1995. doi:10.1007/BF02584453.

    Article  Google Scholar 

  14. Cohen, L., Time–frequency distributions: a review. Proc. IEEE. 77:941–981, 1989. doi:10.1109/5.30749.

    Article  Google Scholar 

  15. Marchant, B. P., Time–frequency analysis for biosystem engineering. Biosystems Eng. 85 (3)261–281, 2003. doi:10.1016/S1537-5110(03)00063-1.

    Article  MathSciNet  Google Scholar 

  16. Semmlow, J. L., Biosignal and biomedical image processing, MATLAB-based applications. Marcel Dekker, New York, 2004.

    Google Scholar 

  17. Boudreaux-Bartels, G. F., and Murry, R., Time–frequency signal representations for biomedical signals. In: Bronzino, J. (Ed.), The biomedical engineering handbookCRC, Boca Raton, 1995.

    Google Scholar 

  18. Neto, E. P. S., Custaud, M. A., Frutoso, J., Somody, L., Gharib, C., and Fortrat, J. O., Smoothed pseudo Wigner–Ville distribution as an alternative to Fourier transform in rats.. Auton. Neurosci. Basic Clin. 87:258–267, 2001. doi:10.1016/S1566-0702(00)00211-3.

    Article  Google Scholar 

  19. Narasimhan, S. V., and Nayak, M. B., Improved Wigner–Ville distribution performance by signal decomposition and modified group delay. Signal Processing. 83:2523–2538, 2003. doi:10.1016/j.sigpro.2003.07.011.

    Article  MATH  Google Scholar 

  20. Drai, R., Khelil, M., and Benchaala, A., Time frequency and wavelet transform applied to selected problems in ultrasonics. NDE. NDT Int. 35:567–572, 2002. doi:10.1016/S0963-8695(02)00041-5.

    Article  Google Scholar 

  21. Rioul, O., Vetterli, M., Wavelets and signal processing., IEEE SP Magazine, 14–38. 1991.

  22. Makeig, S., and Inlow, M., Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86:23–35, 1993. doi:10.1016/0013-4694(93)90064-3.

    Google Scholar 

  23. Lee, T. W., Girolami, M., and Sejnowski, T. J., Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 11:606–633, 1999. doi:10.1162/089976699300016719.

    Article  Google Scholar 

  24. Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10:626–634, 1999. doi:10.1109/72.761722.

    Article  Google Scholar 

  25. Hyvarinen, A., and Oja, E., Independent component analysis: algorithms and applications. Neural Netw. 13 (4–5)411–430, 2000. doi:10.1016/S0893-6080(00)00026-5.

    Article  Google Scholar 

  26. The FastICA MATLAB Package: Available from http://www.cis.hut.fi/projects/ica/fastica.

  27. Widodo, A., and Yang, B. S., Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 33:241–250, 2007. doi:10.1016/j.eswa.2006.04.020.

    Article  Google Scholar 

  28. Widodo, A., Yang, B. S., and Han, T., Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Syst. Appl. 32:299–312, 2007. doi:10.1016/j.eswa.2005.11.031.

    Article  Google Scholar 

  29. Haykin, S., Neural networks: a comprehensive foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  30. Basheer, I. A., and Hajmeer, M., Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43:3–31, 2000. doi:10.1016/S0167-7012(00)00201-3.

    Article  Google Scholar 

  31. Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.

    Article  MATH  Google Scholar 

  32. Hagan, M. T., and Menhaj, M. B., Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5 (6)989–993, 1994. doi:10.1109/72.329697.

    Article  Google Scholar 

  33. Subasi, A., and Ercelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed. 78 (2)87–99, 2005. doi:10.1016/j.cmpb.2004.10.009.

    Article  Google Scholar 

  34. Karlsson, J. S., Gerdle, B., and Akay, M., Analyzing surface myoelectric signals recorded during isokinetic contractions. IEEE Eng. Med. Biol. 20:97–105, 2001. doi:10.1109/51.982281.

    Article  Google Scholar 

  35. Karlsson, S., Yu, J., and Akay, M., Time–frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans. Biomed. Eng. 47:228–238, 2000. doi:10.1109/10.821766.

    Article  Google Scholar 

Download references

Acknowledgement

This research has been supported by the Scientific & Technological Research Council of Turkey (TUBITAK Project no: 105E039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamit Subasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subasi, A., Kiymik, M.K. Muscle Fatigue Detection in EMG Using Time–Frequency Methods, ICA and Neural Networks. J Med Syst 34, 777–785 (2010). https://doi.org/10.1007/s10916-009-9292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9292-7

Keywords

Navigation