Skip to main content
Log in

Optimal Convergence and Long-Time conservation of Exponential Integration for Schrödinger Equations in a Normal or Highly Oscillatory Regime

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we formulate and analyse exponential integrations when applied to nonlinear Schrödinger equations in a normal or highly oscillatory regime. A kind of exponential integrators with energy preservation, optimal convergence and long time near conservations of density, momentum and actions is formulated and analysed. To this end, we propose continuous-stage exponential integrators and show that the integrators can exactly preserve the energy of Hamiltonian systems. Three practical energy-preserving integrators are presented. We establish that these integrators exhibit optimal convergence and have near conservations of density, momentum and actions over long times. A numerical experiment is carried out to support all the theoretical results presented in this paper. Some applications of the integrators to other kinds of ordinary/partial differential equations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We still use the notation f in this section without any confusion.

  2. The methods show similar conservation of actions and we omit the corresponding numerical results for brevity.

  3. This form has been given in [44] for first-order ODEs.

References

  1. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Effective approximation for the linear time-dependent Schrödinger equation. Found. Comput. Math. 14, 689–720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balac, S., Fernandez, A., Mahé, F., Méhats, F., Texier-Picard, R.: The interaction picture method for solving the generalized nonlinear Schrödinger equation in optics. ESAIM Math. Model. Numer. Anal. 50, 945–964 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseu-dospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 52, 1103–1127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Carles, R., Su, C., Tang, Q.: Error estimates of a regularized finite difference method for the logarithmic Schrödinger Equation. SIAM J. Numer. Anal. 57, 657–680 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berland, H., Islas, A.L., Schober, C.M.: Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation. J. Comput. Phys. 255, 284–299 (2007)

    Article  MATH  Google Scholar 

  6. Bejenaru, I., Tao, T.: Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation. J. Funct. Anal. 233, 228–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berland, H., Skaflestad, B., Wright, W.M.: EXPINT-A MATLAB package for exponential integrators. ACM Trans. Math. Softw. 33, 4-es (2007)

    Article  Google Scholar 

  8. Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. SIAM J. Numer. Anal. 55, 1387–1411 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhatt, A., Moore, B.E.: Structure-preserving exponential Runge-Kutta methods. SIAM J. Sci. Comput. 39, A593–A612 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brugnano, L., Zhang, C., Li, D.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonl. Sci. Numer. Simulat. 60, 33–49 (2018)

    Article  MATH  Google Scholar 

  12. Cano, B., González-Pachón, A.: Exponential time integration of solitary waves of cubic Schrödinger equation. Appl. Numer. Math. 91, 26–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castella, F., Chartier, Ph., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the Average Vector Fieldmethod. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chartier, Ph., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129, 211–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chartier, Ph., Méhats, F., Thalhammer, M., Zhang, Y.: Improved error estimates for splitting methods applied to nonlinear Schrödinger equations. Math. Comp. 85, 2863–2885 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, J.B., Qin, M.Z.: Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12, 193–204 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahlby, M., Owren, B.: A general framework for deriving integral preserving numerical methods for PDEs. SIAM J. Sci. Comput. 33, 2318–2340 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dujardin, G.: Exponential Runge-Kutta methods for the Schrödinger equation. Appl. Numer. Math. 59, 1839–1857 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eilinghoff, J., Schnaubelt, R., Schratz, K.: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl. 442, 740–760 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Faou, E.: Geometric Numerical Integration and Schrödinger Equations, European Math. Soc. Publishing House, Zürich (2012)

  24. Faou, E., Gauckler, L., Lubich, C.: Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2, e5 (2014). ((45 pages))

    Article  MATH  Google Scholar 

  25. Franck, E., Hölzl, M., Lessig, A., Sonnendrücker, E.: Energy Conservation and numerical stability for the reduced MHD models of the non-linear JOREK code. ESAIM Math. Model. Numer. Anal. 49, 1331–1365 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frenod, E., Hirstoaga, S.A., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field. Commun. Comput. Phys. 18, 263–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gander, M.J., Jiang, Y.-L., Song, B.: A superlinear convergence estimate for the parareal Schwarz waveform relaxation algorithm. SIAM J. Sci. Comput. 41, A1148–A1169 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gauckler, L.: Numerical long-time energy conservation for the nonlinear Schrödinger equation. IMA J. Numer. Anal. 37, 2067–2090 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Gauckler, L., Lubich, C.: Nonlinear Schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10, 141–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Noti. 3, 414–432 (2009)

    MATH  Google Scholar 

  32. Gong, Y., Zhao, J., Yang, X., Wang, Q.: Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J. Sci. Comput. 40, B138–B167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hairer, E., Lubich, Ch.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Lubich, Ch., Wang, B.: A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field. Numer. Math. 144, 787–809 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  36. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Islas, A.L., Karpeev, D.A., Schober, C.M.: Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173, 116–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jiang, C., Wang, Y., Cai, W.: A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation. J. Comput. Phys., 109690 (2020)

  40. Jin, S., Markowich, P., Sparber, C.: Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20, 121–210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kishimoto, N.: Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation. J. Diff. Equ. 247, 1397–1439 (2009)

    Article  MATH  Google Scholar 

  42. Knöller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lasser, C., Lubich, Ch.: Computing quantum dynamics in the semiclassical regime. Acta Numer. 29, 229–401 (2020)

    Article  MathSciNet  Google Scholar 

  44. Li, Y.W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, 1876–1895 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  46. Madaule, E., Restelli, M., Sonnendrücker, E.: Energy conserving discontinuous Galerkin spectral element method for the Vlasov-Poisson system. J. Comput. Phys. 279, 261–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 16, 1–25 (2017)

    MATH  Google Scholar 

  48. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis, Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  49. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Thalhammer, M.: Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Verwer, J.G., van Loon, M.: An evaluation of explicit pseudo-steady-state approximation schemes for stiff ODE systems from chemical kinetics. J. Comput. Phys. 113, 347–352 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, B., Wu, X.: The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein-Gordon equations. IMA. J. Numer. Anal. 39, 2016–2044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, B., Wu, X.: Long-time momentum and actions behaviour of energy-preserving methods for semilinear wave equations via spatial spectral semi-discretizations. Adv. Comput. Math. 45, 2921–2952 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, B., Wu, X.: Exponential collocation methods based on continuous finite element approximations for efficiently solving the cubic Schrödinger equation. Numer. Meth. PDEs 36, 1735–1757 (2020)

    Article  Google Scholar 

  56. Wang, B., Wu, X.: A long-term numerical energy-preserving analysis of symmetric and/or symplectic extended RKN integrators for efficiently solving highly oscillatory Hamiltonian systems. BIT Numer. Math. 61, 977–1004 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang, B., Zhao, X.: Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field. SIAM J. Numer. Anal. 59, 2075–2105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wu, X., Wang, B.: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, New York (2018)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are sincerely thankful to two anonymous reviewers for their valuable comments. The authors are grateful to Christian Lubich for his helpful comments and discussions on the topic of modulated Fourier expansions. We also thank Xinyuan Wu and Changying Liu for their valuable comments. This work was supported by NSFC 11871393 and by International Science and Technology Cooperation Program of Shaanxi Key Research & Development Plan No. 2019KWZ-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaolin Jiang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

Firstly, according to the scheme (2.4), the Duhamel principle (2.2) and the fact that

$$\begin{aligned} \left\| C_{\tau }({\mathcal {W}})w(\kappa _n)-e^{\text{ i }\tau \delta \kappa \triangle }w(\kappa _n)\right\| _{H^{\alpha -2}}\lesssim \delta \kappa , \end{aligned}$$

it is clearly that \( \Vert \delta ^{n+\tau }\Vert _{H^{\alpha -2}}\lesssim \delta \kappa .\) Then it follows from the Duhamel principle (2.2) that

$$\begin{aligned} \begin{aligned} w(\kappa _n+\tau \delta \kappa )&=e^{\text{ i }\tau \delta \kappa \triangle }w(\kappa _n)+ \varepsilon \tau \delta \kappa \varphi _{1}(\tau {\mathcal {W}})f(w(\kappa _n))\\&\quad + \varepsilon \tau ^2 \delta \kappa ^2 \int _{0}^1 \int _{0}^1\xi e^{(1-\xi )\text{ i }\tau \delta \kappa \triangle } f'(w(\kappa _n+\zeta \xi \tau \delta \kappa ))w'(\kappa _n+\zeta \xi \tau \delta \kappa ) d\zeta d\xi . \end{aligned} \end{aligned}$$

For the integrator (2.4), we have

$$\begin{aligned} \begin{aligned} \varPhi ^{\tau \delta \kappa }(w(\kappa _n)) =\,&C_{\tau }({\mathcal {W}})w(\kappa _n)+ \varepsilon \delta \kappa \int _{0}^{1}A_{\tau ,\sigma }({\mathcal {W}}) d\sigma f(w(\kappa _n))+ \delta \kappa ^2 C_1\\&+ \varepsilon \delta \kappa ^2 \int _{0}^1 \int _{0}^1\sigma A_{\tau ,\sigma }({\mathcal {W}}) f'(w(\kappa _n+\zeta \sigma \delta \kappa ))w'(\kappa _n+\zeta \sigma \delta \kappa ) d\zeta d\sigma \end{aligned} \end{aligned}$$

with \(\left\| C_1\right\| _{H^{\alpha -4}}\lesssim 1\), where we replace \(\varPhi ^{\sigma \delta \kappa }(w(\kappa _n))\) by \(w(\kappa _n+\sigma \delta \kappa )\) in the numerical scheme and the error brought by this is denoted by \(\delta \kappa ^2 C_1\). The combination of the above two equalities yields \(\Vert \delta ^{n+\tau }\Vert _{H^{\alpha -4}}\lesssim \delta \kappa ^2\) for \(0<\tau <1\), where the inequality \(\left\| \int _{0}^{1}A_{\tau ,\sigma }({\mathcal {W}}) d\sigma -\tau \varphi _{1}(\tau {\mathcal {W}})\right\| _{H^{\alpha -4}}\lesssim \delta \kappa \) and the result of Lagrange interpolation have been used.

Then by the same arguments given above and by noticing \(C_{1}({\mathcal {W}})=e^{\text{ i }\delta \kappa \triangle }\), the bound of \(\Vert \delta ^{n+1}\Vert _{H^{\alpha -2}}\) can be derived.

Finally, in the light of

$$\begin{aligned} \begin{aligned} w(\kappa _{n+1}) =\,&e^{ \text{ i }\delta \kappa \triangle }w(\kappa _n)+ \varepsilon \delta \kappa \varphi _{1}( {\mathcal {W}})f(w(\kappa _n))+ \varepsilon \delta \kappa ^2 \varphi _{2}( {\mathcal {W}})f'(w(\kappa _n))w'(\kappa _n) \\&+\varepsilon \delta \kappa ^3 \int _{0}^1 \int _{0}^1(1-\zeta )\xi ^2 e^{(1-\xi ) \text{ i }\delta \kappa \triangle }\big ( f''(w(\kappa _n+\zeta \xi \delta \kappa ))(w'(\kappa _n+\zeta \xi \delta \kappa ))^2\\&+ f'(w(\kappa _n+\zeta \xi \delta \kappa ))w''(\kappa _n+\zeta \xi \delta \kappa )\big )d\zeta d\xi , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \varPhi ^{ \delta \kappa }(w(\kappa _n)) =\,&e^{ \text{ i }\delta \kappa \triangle }w(\kappa _n)+ \varepsilon \delta \kappa \int _{0}^{1}A_{1,\sigma }({\mathcal {W}}) d\sigma f(w(\kappa _n))\\&+ \varepsilon \delta \kappa ^2 \int _{0}^{1}\sigma A_{1,\sigma }({\mathcal {W}}) d\sigma f'(w(\kappa _n))w'(\kappa _n) + \varepsilon \delta \kappa ^3 C_2\\&+\varepsilon \delta \kappa ^3 \int _{0}^1 \int _{0}^1(1-\zeta )\sigma ^2 A_{1,\sigma }({\mathcal {W}})\big ( f''(w(\kappa _n+\zeta \sigma \delta \kappa ))(w'(\kappa _n+\zeta \sigma \delta \kappa ))^2\\&+ f'(w(\kappa _n+\zeta \sigma \delta \kappa ))w''(\kappa _n+\zeta \sigma \delta \kappa )\big )d\zeta d\sigma , \end{aligned} \end{aligned}$$

with \(\left\| C_2\right\| _{H^{\alpha -4}}\lesssim 1\), we obtain the bound of \(\Vert \delta ^{n+1}\Vert _{H^{\alpha -4}}\) as follows

$$\begin{aligned} \begin{aligned}&\Vert \delta ^{n+1}\Vert _{H^{\alpha -4}} \lesssim&\sum \limits _{j=0}^{1}\varepsilon \delta \kappa ^{j+1}\left\| \varphi _{j+1}( {\mathcal {W}})-\int _{0}^{1}A_{1,\sigma }({\mathcal {W}})\dfrac{\sigma ^j}{j!}\mathrm{d}\sigma \right\| _{H^{\alpha -4}}+\varepsilon \delta \kappa ^3. \end{aligned} \end{aligned}$$

Using the results of \(A_{1,\sigma }\):

$$\begin{aligned} \left\| \int _{0}^{1}A_{1,\sigma }({\mathcal {W}}) d\sigma - \varphi _{1}( {\mathcal {W}})\right\| _{H^{\alpha -4}}\lesssim 0, \ \ \left\| \int _{0}^{1}A_{1,\sigma }({\mathcal {W}}) \sigma d\sigma - \varphi _{2}( {\mathcal {W}})\right\| _{H^{\alpha -4}}\lesssim \delta \kappa , \end{aligned}$$

the last local error can be bounded. \(\square \)

Proof of Lemma 2

Employing the definition of the method, the isometry \(C_{\tau }({\mathcal {W}})\) and the Lipschitz estimate of f, one gets

$$\begin{aligned} \begin{aligned}&\Vert \varPhi ^{\tau \delta \kappa }(v)-\varPhi ^{\tau \delta \kappa }(w)\Vert _{H^{\beta }}\le \Vert v-w\Vert _{H^{\beta }}+\varepsilon L C_A \int _{0}^{\delta \kappa } \Vert \varPhi ^{\sigma }(v)-\varPhi ^{\sigma }(w)\Vert _{H^{\beta }}d\sigma , \end{aligned} \end{aligned}$$

as long as \(\varPhi ^{\sigma }(v),\ \varPhi ^{\sigma }(w)\in {\mathcal {H}}^{\alpha -2}_{R}\) for \(\sigma \in [0,\delta \kappa ]\). Considering \(\tau =1\) and using the Gronwall’s lemma yields

$$\begin{aligned} \Vert \varPhi ^{ \delta \kappa }(v)-\varPhi ^{ \delta \kappa }(w)\Vert _{H^{\beta }}\le e^{\varepsilon \delta \kappa L C_A}\Vert v-w\Vert _{H^{\beta }}, \end{aligned}$$

which gives the first statement of (3.7) by modifying \(\delta \kappa \) to \(\tau \delta \kappa \). Setting in particular \(w = 0\) implies \(\varPhi ^{\tau \delta \kappa }(v)\in {\mathcal {H}}^{\alpha -2}_{R}\) under the condition that \(0<\delta \kappa <\delta \kappa _0\). It is also direct to have

$$\begin{aligned} \begin{aligned}&\Vert (\varPhi ^{ \delta \kappa }(v)-e^{\text{ i }\delta \kappa \triangle }v)-(\varPhi ^{ \delta \kappa }(w)-e^{\text{ i }\delta \kappa \triangle }w)\Vert _{H^{\beta }}\le \varepsilon \delta \kappa L C_A \Vert \varPhi ^{\tau \delta \kappa }(v)-\varPhi ^{\tau \delta \kappa }(w)\Vert _{H^{\beta }}. \end{aligned} \end{aligned}$$

The second result of (3.7) follows immediately from this inequality and the first statement. \(\square \)

Proof of Lemma 3

In order to derive the modulation equations for EP1, a new approach different from [19, 29, 30] is considered here. To this end, we define the operator \(L^{k}\) and it can be expressed in Taylor expansions as follows:

$$\begin{aligned} \begin{aligned} L^{\langle j\rangle }_j=\,&\frac{1}{2} {\tilde{\epsilon }} h^2\omega _j\csc \big (\frac{1}{2}h\omega _j\big ) D+ \frac{1}{48} {\tilde{\epsilon }}^3 h^4\omega _j\csc \big (\frac{1}{2}h\omega _j\big ) D^3+\cdots ,\\ L^{k} = \,&\text{ i }h\varOmega \csc \big (\frac{1}{2}h\varOmega \big )\sin \big (\frac{1}{2}h(-\varOmega -(k \cdot \omega )I)\big ) \\&+ \frac{1}{2}{\tilde{\epsilon }} h^2 \varOmega \csc \big (\frac{1}{2}h\varOmega \big )\cos \big (\frac{1}{2}h((k \cdot \omega )I+\varOmega )\big )D +\cdots . \end{aligned} \end{aligned}$$
(6.1)

Moreover, for the operator \(L_3^{k}(\sigma )\), we have

$$\begin{aligned} L_3^{k}(\frac{1}{2})=\cos \big (\frac{h(k \cdot \omega )}{2}\big )+\frac{1}{2}\sin \big (\frac{h(k \cdot \omega )}{2}\big )(\text{ i } h{\tilde{\epsilon }} D)+\cdots . \end{aligned}$$

By using the symmetry of the EP1 integrator and

$$\begin{aligned} \displaystyle \int _{0}^{1}f((1-\sigma )u^n+\sigma u^{n-1})d\sigma =\displaystyle \int _{0}^{1}f((1-\sigma )u^{n-1}+\sigma u^{n})d\sigma , \end{aligned}$$

we can rewrite the scheme of EP1 asFootnote 3

$$\begin{aligned} \begin{aligned}&u^{n+1}-2\cos (h\varOmega )u^{n}+u^{n-1}\\&\quad =h\Big [\varphi _1(V)\displaystyle \int _{0}^{1}f((1-\sigma )u^{n}+\sigma u^{n+1})d\sigma -\varphi _1(-V) \displaystyle \int _{0}^{1}f((1-\sigma )u^{n-1}+\sigma u^{n})d\sigma \Big ]. \end{aligned} \end{aligned}$$
(6.2)

For the term \((1-\sigma )u^{n}+\sigma u^{n+1}\), we look for a modulated Fourier expansion of the form

$$\begin{aligned} \begin{aligned} {\tilde{u}}_h(t+\frac{h}{2},x,\sigma )= \sum \limits _{\left\| k\right\| \le K}w_{j(k)}^{k}\Big ({\tilde{\epsilon }}(t+\frac{h}{2}),\sigma \Big )\mathrm {e}^{\mathrm {i}(j(k) \cdot x)} \mathrm {e}^{-\mathrm {i}(k \cdot \omega ) (t+\frac{h}{2})}, \end{aligned} \end{aligned}$$

which leads to

$$\begin{aligned} \begin{aligned} w_{j(k)}^{k}\Big ({\tilde{\epsilon }}(t+\frac{h}{2}),\sigma \Big ) =&L^{k}_3(\sigma )z_{j(k)}^{k}\Big ({\tilde{\epsilon }}(t+\frac{h}{2})\Big ). \end{aligned} \end{aligned}$$
(6.3)

Likwise, for \((1-\sigma )u^{n-1}+\sigma u^{n}\), we have the following modulated Fourier expansion

$$\begin{aligned} \begin{aligned} {\tilde{u}}_h(t-\frac{h}{2},x,\sigma )= \sum \limits _{\left\| k\right\| \le K}w_{j(k)}^{k}\Big ({\tilde{\epsilon }}(t-\frac{h}{2}),\sigma \Big )\mathrm {e}^{\mathrm {i}(j(k) \cdot x)} \mathrm {e}^{-\mathrm {i}(k \cdot \omega )(t-\frac{h}{2})}. \end{aligned} \end{aligned}$$

Inserting (4.5) and (6.3) into (6.2) yields

$$\begin{aligned} \begin{aligned}&{\tilde{u}}(t+h,x)-2\cos (h\varOmega ){\tilde{u}}(t,x)+{\tilde{u}}(t-h,x)\\&\quad =h\Big [\varphi _1(V)\displaystyle \int _{0}^{1}f\big ({\tilde{u}}_{h}(t+\frac{h}{2},x,\sigma )\big )d\sigma -\varphi _1(-V) \displaystyle \int _{0}^{1}f\big ({\tilde{u}}_{h}(t-\frac{h}{2},x,\sigma )\big )d\sigma \Big ], \end{aligned} \end{aligned}$$

which can be expressed by operators as

$$\begin{aligned} \begin{aligned}&(\varphi _1(\text{ i }h \varOmega )\mathrm {e}^{\frac{1}{2} hD}-\varphi _1(-\text{ i }h \varOmega )\mathrm {e}^{-\frac{1}{2} hD})^{-1}( \mathrm {e}^{ hD}-2\cos (h\varOmega )+ \mathrm {e}^{- hD}){\tilde{u}}(t,x)\\&\quad =h\displaystyle \int _{0}^{1}f({\tilde{u}}_{h}(t,x,\sigma ))d\sigma . \end{aligned} \end{aligned}$$
(6.4)

On the other hand, we rewrite the nonlinearity f as:

$$\begin{aligned} \begin{aligned}&f(u) =-\text{ i }\sum \limits _{\left\| k\right\| \le K}\sum \limits _{j(k) \in {\mathcal {M}}}\sum \limits _{k^1+k^2-k^3=k }w^{k^1}_{l_1}w^{k^2}_{l_2}\overline{w^{k^3}_{l_3}} e^{\mathrm {i}(j(k)\cdot x)}\mathrm {e}^{-\mathrm {i}(k \cdot \omega ) t}, \end{aligned} \end{aligned}$$

where \(j(k)=(j(k^1)+j(k^2)-j(k^3))\ \text{ mod }\ 2M\) if \(k=k^1+k^2-k^3\). On the basis of this fact and (6.4), considering the jth Fourier coefficient and comparing the coefficients of \(\mathrm {e}^{-\mathrm {i}(k\cdot \omega ) t}\), the result of this lemma is obtained. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Jiang, Y. Optimal Convergence and Long-Time conservation of Exponential Integration for Schrödinger Equations in a Normal or Highly Oscillatory Regime. J Sci Comput 90, 93 (2022). https://doi.org/10.1007/s10915-022-01774-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01774-2

Keywords

Navigation