Skip to main content
Log in

Efficient Implementation of Adaptive Order Reconstructions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Including polynomials with small degree and stencil when designing very high order reconstructions is surely beneficial for their non oscillatory properties, but may bring loss of accuracy on smooth data unless special care is exerted. In this paper we address this issue with a new Central \(\mathsf {WENOZ}\) (\(\mathsf {CWENOZ}\)) approach, in which the reconstruction polynomial is computed from a single set of non linear weights, but the linear weights of the polynomials with very low degree (compared to the final desired accuracy) are infinitesimal with respect to the grid size. After proving general results that guide the choice of the \(\mathsf {CWENOZ}\) parameters, we study a concrete example of a reconstruction that blends polynomials of degree six, four and two, mimicking already published Adaptive Order \(\mathsf {WENO}\) reconstructions (Arbogast et al. in SIAM J Numer Anal 56(3):1818-1947, 2018),(Balsara et al. in J Comput Phys 326:780-804, 2016). The novel reconstruction yields similar accuracy and oscillations with respect to the previous ones, but saves up to 20% computational time since it does not rely on a hierarchic approach and thus does not compute multiple sets of nonlinear weights in each cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For this test, claw1dArena was compiled with the GNU Compiler and -O3 optimization level, profiling data were collected with the callgrind utility of the valgrind suite and analyzed with kcachegrind. The data reported refer to the linear advection of the Jiang–Shu profile and to the Lax shock tube with characteristic projection.

References

  1. Aràndiga, F., Baeza, A., Belda, A.M., Mulet, P.: Analysis of WENO schemes for full and global accuracy. SIAM J. Numer. Anal. 49(2), 893–915 (2011). https://doi.org/10.1137/100791579

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Huang, C.S., Zhao, X.: Accuracy of WENO and adaptive order WENO reconstructions for solving conservation laws. SIAM J. Numer. Anal. 56(3), 1818–1947 (2018). https://doi.org/10.1137/17M1154758

    Article  MathSciNet  MATH  Google Scholar 

  3. Baeza, A., Bürger, R., Mulet, P., Zorío, D.: Central WENO schemes through a global average weight. J. Sci. Comput. 78(1), 499–530 (2019). https://doi.org/10.1007/s10915-018-0773-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020). https://doi.org/10.1016/j.jcp.2019.109062

    Article  MathSciNet  Google Scholar 

  5. Balsara, D.S., Garain, S., Shu, C.W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016). https://doi.org/10.1016/j.jcp.2016.09.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008). https://doi.org/10.1016/j.jcp.2007.11.038

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscheri, W., Balsara, D.S.: High order direct Arbitrary-Lagrangian–Eulerian (ALE) \(\rm P_NP_M\) schemes with WENO Adaptive-Order reconstruction on unstructured meshes. J. Comput. Phys. 398, 108899 (2019). https://doi.org/10.1016/j.jcp.2019.108899

    Article  MathSciNet  Google Scholar 

  8. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, NY (2008)

    Book  Google Scholar 

  9. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008). https://doi.org/10.1016/j.jcp.2007.11.029

    Article  MathSciNet  MATH  Google Scholar 

  10. Capdeville, G.: A high-order multi-dimensional HLL-Riemann solver for non-linear Euler equations. J. Comput. Phys. 230(8), 2915–2951 (2011). https://doi.org/10.1016/j.jcp.2010.12.043

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011). https://doi.org/10.1016/j.jcp.2010.11.028

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro-Dìaz, M.J., Semplice, M.: Third- and fourth-order well-balanced schemes for the shallow water equations based on the CWENO reconstruction. Int. J. Numer. Methods Fluid 89(8), 304–325 (2019). https://doi.org/10.1002/fld.4700

    Article  MathSciNet  Google Scholar 

  13. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: Cool WENO schemes Comput. Fluids 169, 71–86 (2018). https://doi.org/10.1016/j.compfluid.2017.07.022

    Article  Google Scholar 

  14. Cravero, I., Puppo, G., Semplice, M., Visconti, G.: CWENO: uniformly accurate reconstructions for balance laws. Math. Comput. 87(312), 1689–1719 (2018). https://doi.org/10.1090/mcom/3273

    Article  MathSciNet  MATH  Google Scholar 

  15. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Scientific Comput. 67, 1219–1246 (2016). https://doi.org/10.1007/s10915-015-0123-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Cravero, I., Semplice, M., Visconti, G.: Optimal definition of the nonlinear weights in multidimensional Central WENOZ reconstructions. SIAM J. Numer. Anal. 57(5), 2328–2358 (2019). https://doi.org/10.1007/s10915-015-0123-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013). https://doi.org/10.1016/j.jcp.2013.05.018

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumbser, M., Boscheri, W., Semplice, M.: Central WENO subcell finite volume limiters for ADER Discontinuous Galerkin schemes on fixed and moving unstructured meshes. Commun. Comput. Phys. 25(2), 311–346 (2019). https://doi.org/10.4208/cicp.OA-2018-0069

    Article  MathSciNet  Google Scholar 

  19. Dumbser, M., Boscheri, W., Semplice, M., Russo, G.: Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructered meshes. SIAM J. Sci. Comput. 39(6), A2564–A2591 (2017). https://doi.org/10.1137/17M1111036

    Article  MATH  Google Scholar 

  20. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693–723 (2007). https://doi.org/10.1016/j.jcp.2006.06.043

    Article  MathSciNet  MATH  Google Scholar 

  21. Falcone, M., Paolucci, G., Tozza, S.: Multidimensional smoothness indicators for first-order Hamilton–Jacobi equations. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.109360

  22. Gerster, S., Herty, M.: Entropies and symmetrization of hyperbolic stochastic Galerkin formulations. Commun. Comput. Phys. 27(3), 639–671 (2020). https://doi.org/10.4208/cicp.OA-2019-0047

    Article  Google Scholar 

  23. Ha, Y., Ho Kim, C., Ju Lee, Y., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232(1), 68–86 (2013). https://doi.org/10.1016/j.jcp.2012.06.016

    Article  MathSciNet  MATH  Google Scholar 

  24. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987). https://doi.org/10.1016/0021-9991(87)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005). https://doi.org/10.1016/j.jcp.2005.01.023

    Article  MATH  Google Scholar 

  26. Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150(1), 97–127 (1999). https://doi.org/10.1006/jcph.1998.6165

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  Google Scholar 

  28. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  29. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014). https://doi.org/10.1137/130947568

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018). https://doi.org/10.1016/j.jcp.2018.09.027

    Article  MathSciNet  MATH  Google Scholar 

  31. Lahooti, M., Pishevar, A.: A new fourth order central WENO method for 3D hyperbolic conservation laws. Appl. Math. Comput. 218(20), 10258–10270 (2012). https://doi.org/10.1016/j.amc.2012.04.003

    Article  MathSciNet  MATH  Google Scholar 

  32. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000). https://doi.org/10.1137/S1064827599359461

    Article  MathSciNet  MATH  Google Scholar 

  33. Naumann, A., Kolb, O., Semplice, M.: On a third order CWENO boundary treatment with application to networks of hyperbolic conservation laws. Appl. Math. Comput. 325, 252–270 (2018). https://doi.org/10.1016/j.amc.2017.12.041

    Article  MathSciNet  MATH  Google Scholar 

  34. Puppo, G.: Numerical entropy production for central schemes. SIAM J. Sci. Comput. 25(4), 1382–1415 (2003). https://doi.org/10.1137/S1064827502386712

    Article  MathSciNet  MATH  Google Scholar 

  35. Puppo, G., Semplice, M.: Numerical entropy and adaptivity for finite volume schemes. Commun. Comput. Phys. 10(5), 1132–1160 (2011). https://doi.org/10.4208/cicp.250909.210111a

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183(1), 187–209 (2002). https://doi.org/10.1006/jcph.2002.7191

    Article  MathSciNet  MATH  Google Scholar 

  37. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016). https://doi.org/10.1007/s10915-015-0038-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Semplice, M., Visconti, G.: claw1dArena v1.1 (2020). https://doi.org/10.5281/zenodo.2641724

  39. Shi, J., Hu, C., Shu, C.W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175(1), 108–127 (2002). https://doi.org/10.1006/jcph.2001.6892

    Article  MATH  Google Scholar 

  40. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253 ICASE Report No.97–65 (1997)

  41. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997). Lecture Notes in Math, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  42. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  43. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009)

    Book  Google Scholar 

  44. Zheng, F., Shu, C.W., Qiu, J.: High order finite difference Hermite WENO schemes for the Hamilton–Jacobi equations on unstructured meshes. Comput. Fluids 183, 53–65 (2019). https://doi.org/10.1016/j.compfluid.2019.02.010

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, J., Cai, L., Zhou, F.Q.: New high-resolution scheme for three-dimensional nonlinear hyperbolic conservation laws. Appl. Math. Comput. 198(2), 770–786 (2008). https://doi.org/10.1016/j.amc.2007.09.017

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, J., Qiu, J.: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 349, 220–232 (2017). https://doi.org/10.1016/j.jcp.2017.08.021

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017). https://doi.org/10.1007/s10915-017-0486-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, J., Qiu, J.: New finite volume weighted essentially nonoscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40(2), A903–A928 (2018). https://doi.org/10.1137/17M1112790

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu, J., Shu, C.W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018). https://doi.org/10.1016/j.jcp.2018.09.003

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhu, J., Shu, C.W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019). https://doi.org/10.1016/j.jcp.2019.04.027

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Semplice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2023 Internet of Production—390621612 and by INDAM GNCS-2019 grant “Approssimazione numerica di problemi di natura iperbolica ed applicazioni”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semplice, M., Visconti, G. Efficient Implementation of Adaptive Order Reconstructions. J Sci Comput 83, 6 (2020). https://doi.org/10.1007/s10915-020-01156-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01156-6

Keywords

Mathematics Subject Classification

Navigation