Skip to main content
Log in

High-resolution WENO schemes using local variation-based smoothness indicator

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

A novel smoothness indicator is proposed herein for WENO schemes based on the point-wise local variation in the candidate stencils. The proposed indicator is further used to define non-linear weights for a WENO scheme. The main feature of the resulting schemes is that they give a higher resolution of the solution compared to other state of art WENO schemes, e.g., WENO-JS, WENO-Z and very recent WENO-L. Moreover, these resulting WENO schemes maintain high-order accuracy and retains the non-oscillatory approximation property. The computational cost of the new scheme is comparable to WENO-Z and WENO-JS schemes. Computational results of selected benchmark test problems illustrate the higher resolution, accuracy and non-oscillatory property of the new schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Balsara DS, Shu C-W (2000) Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J Comput Phys 160(2):405–452

    Article  MathSciNet  Google Scholar 

  • Biswas B, Dubey RK (2020) Eno and Weno schemes using arc-length based smoothness measurement. Comput Math Appl 80(12):2780–2795

    Article  MathSciNet  Google Scholar 

  • Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227(6):3191–3211

    Article  MathSciNet  Google Scholar 

  • Castro M, Costa B, Don WS (2011) High order weighted essentially non-oscillatory Weno-z schemes for hyperbolic conservation laws. J Comput Phys 230(5):1766–1792

    Article  MathSciNet  Google Scholar 

  • Godunov SK (1959) A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math Sb 47:271–306

    MATH  Google Scholar 

  • Gottlieb S, Shu C-W (1998) Total variation diminishing Runge-Kutta schemes. Math Comput 67(221):73–85

    Article  MathSciNet  Google Scholar 

  • Ha Y, Kim CH, Lee YJ, Yoon J (2013) An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J Comput Phys 232(1):68–86

    Article  MathSciNet  Google Scholar 

  • Harten A (1984) On a class of high resolution total-variation-stable finite-difference schemes. SIAM J Numer Anal 21(1):1–23

    Article  MathSciNet  Google Scholar 

  • Harten A (1989) Eno schemes with subcell resolution. J Comput Phys 83(1):148–184

    Article  MathSciNet  Google Scholar 

  • Harten A (1997) High resolution schemes for hyperbolic conservation laws. J Comput Phys 135(2):260–278

    Article  MathSciNet  Google Scholar 

  • Henrick AK, Aslam TD, Powers JM (2005) Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J Comput Phys 207(2):542–567

    Article  Google Scholar 

  • Jiang G-S, Shu C-W (1996) Efficient implementation of weighted Eno schemes. J Comput Phys 126(1):202–228

    Article  MathSciNet  Google Scholar 

  • Kim CH, Ha Y, Yoon J (2016) Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes. J Sci Comput 67(1):299–323

    Article  MathSciNet  Google Scholar 

  • Kurganov A, Tadmor E (2002) Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer Methods Partial Differ Equ 18(5):584–608

    Article  MathSciNet  Google Scholar 

  • Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7(1):159–193

    Article  MathSciNet  Google Scholar 

  • Liska R, Wendroff B (2003) Comparison of several difference schemes on 1d and 2d test problems for the Euler equations. SIAM J Sci Comput 25(3):995–1017

    Article  MathSciNet  Google Scholar 

  • Liu X-D, Osher S, Chan T et al (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115(1):200–212

    Article  MathSciNet  Google Scholar 

  • Liu S, Shen Y, Chen B, Zeng F (2018) Novel local smoothness indicators for improving the third-order WENO scheme. Int J Numer Methods Fluids 87:51–69

    Article  MathSciNet  Google Scholar 

  • Osher S, Chakravarthy S (1984) High resolution schemes and the entropy condition. SIAM J Numer Anal 21(5):955–984

    Article  MathSciNet  Google Scholar 

  • Osher S, Chakravarthy S (1986) Very high order accurate tvd schemes. In: Dafermos C, Ericksen JL, Kinderlehrer D, Slemrod M (eds) Oscillation theory, computation, and methods of compensated compactness. Springer, pp 229–274

  • Parvin S, Dubey RK (2021) A new framework to construct third-order weighted essentially nonoscillatory weights using weight limiter function. Int J Numer Methods Fluids 93(4):1213–1234

    Article  MathSciNet  Google Scholar 

  • Rathan S, Raju GN (2018) A modified fifth-order Weno scheme for hyperbolic conservation laws. Comput Math Appl 75(5):1531–1549

    Article  MathSciNet  Google Scholar 

  • Samala R, Biswas B (2021) Arc length-based WENO scheme for Hamilton–Jacobi equations. Commun Appl Math Comput 3:481–496

  • Schulz-Rinne CW, Collins JP, Glaz HM (1993) Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J Sci Comput 14(6):1394–1414

    Article  MathSciNet  Google Scholar 

  • Shen Y, Zha G (2008) A robust seventh-order WENO scheme and its applications. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, p 757

  • Shu C-W (1988) Total-variation-diminishing time discretizations. SIAM J Sci Stat Comput 9(6):1073–1084

    Article  MathSciNet  Google Scholar 

  • Shu C-W (1998) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn B, Shu C-W, Johnson C, Tadmor E (eds) Advanced numerical approximation of nonlinear hyperbolic equations. Springer, pp 325–432

  • Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock–capturing schemes, II. J Comput Phys 83(1):32–78

  • Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comput Phys 27(1):1–31

    Article  MathSciNet  Google Scholar 

  • Toro EF (2013) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, Berlin

    Google Scholar 

  • Woodward P, Colella P (1984) The numerical simulation of two-dimensional fluid flow with strong shocks. J Comput Phys 54(1):115–173

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Dubey.

Additional information

Communicated by Abdellah Hadjadj.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prashant Kumar Pandey and Ritesh Kumar Dubey acknowledge support from SERB India through project file number MTR/2017/000187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P.K., Ismail, F. & Dubey, R.K. High-resolution WENO schemes using local variation-based smoothness indicator. Comp. Appl. Math. 41, 208 (2022). https://doi.org/10.1007/s40314-022-01916-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01916-0

Keywords

Mathematics Subject Classification

Navigation