Skip to main content
Log in

Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The computation of the Mittag-Leffler (ML) function with matrix arguments, and some applications in fractional calculus, are discussed. In general the evaluation of a scalar function in matrix arguments may require the computation of derivatives of possible high order depending on the matrix spectrum. Regarding the ML function, the numerical computation of its derivatives of arbitrary order is a completely unexplored topic; in this paper we address this issue and three different methods are tailored and investigated. The methods are combined together with an original derivatives balancing technique in order to devise an algorithm capable of providing high accuracy. The conditioning of the evaluation of matrix ML functions is also studied. The numerical experiments presented in the paper show that the proposed algorithm provides high accuracy, very often close to the machine precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. www.mathworks.com/matlabcentral/fileexchange/66272-mittag-leffler-function-with-matrix-arguments.

References

  1. Al-Mohy, A.H., Higham, N.J.: The complex step approximation to the Fréchet derivative of a matrix function. Numer. Algorithms 53(1), 113–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balachandran, K., Govindaraj, V., Ortigueira, M., Rivero, M., Trujillo, J.: Observability and controllability of fractional linear dynamical systems. IFAC Proc. Vol. 46(1), 893–898 (2013)

    Article  Google Scholar 

  3. Barrett, W.W., Jarvis, T.J.: Spectral properties of a matrix of Redheffer. Linear Algebra Appl. 162/164, 673–683 (1992). Directions in matrix theory (Auburn, AL, 1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-digit challenge. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2004)

    Book  MATH  Google Scholar 

  5. Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics 6(2), 15 (2018). https://doi.org/10.3390/math6020015

    Article  MATH  Google Scholar 

  6. Davies, P.I., Higham, N.J.: A Schur-Parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. 25(2), 464–485 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Del Buono, N., Lopez, L., Politi, T.: Computation of functions of Hamiltonian and skew-symmetric matrices. Math. Comp. Simul. 79(4), 1284–1297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dieci, L., Papini, A.: Conditioning and Padé approximation of the logarithm of a matrix. SIAM J. Matrix Anal. Appl. 21(3), 913–930 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics, vol. 2004. Springer, Berlin (2010)

  10. Diethelm, K., Ford, N.J.: Numerical solution of the Bagley-Torvik equation. BIT 42(3), 490–507 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3), 621–640 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6(3), 243–263 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Dixon, J.: On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with nonsmooth solutions. BIT 25(4), 624–634 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Džrbašjan [Djrbashian], M.M.: Harmonic analysis and boundary value problems in the complex domain, Operator Theory: Advances and Applications, vol. 65. Birkhäuser Verlag, Basel (1993). Translated from the manuscript by H. M. Jerbashian and A. M. Jerbashian [A. M. Dzhrbashyan]

  15. Frommer, A., Simoncini, V.: Matrix functions. In: Model order reduction: theory, research aspects and applications, Math. Ind., vol. 13, pp. 275–303. Springer, Berlin (2008)

  16. Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018)

    Article  MathSciNet  Google Scholar 

  17. Garrappa, R.: Exponential integrators for time-fractional partial differential equations. Eur. Phys. J. Spec. Top. 222(8), 1915–1927 (2013)

    Article  Google Scholar 

  18. Garrappa, R.: Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garrappa, R., Mainardi, F., Maione, G.: Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garrappa, R., Moret, I., Popolizio, M.: On the time-fractional Schrödinger equation: theoretical analysis and numerical solution by matrix Mittag-Leffler functions. Comput. Math. Appl. 74(5), 977–992 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garrappa, R., Popolizio, M.: On the use of matrix functions for fractional partial differential equations. Math. Comput. Simul. 81(5), 1045–1056 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Garrappa, R., Popolizio, M.: Evaluation of generalized Mittag-Leffler functions on the real line. Adv. Comput. Math. 39(1), 205–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)

    Article  MathSciNet  Google Scholar 

  25. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (1996)

  26. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions. Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014)

    MATH  Google Scholar 

  27. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag-Leffler function \(E_{\alpha,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Fractals and fractional calculus in continuum mechanics (Udine, 1996), CISM Courses and Lect., vol. 378, pp. 223–276. Springer, Vienna (1997)

  29. Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({ A}^\alpha, \log ({ A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. pp. Art. ID 298,628, 51 (2011)

  31. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley, New York (1974)

    MATH  Google Scholar 

  32. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

    Book  MATH  Google Scholar 

  33. Higham, N.J.: Functions of Matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  34. Higham, N.J., Al-Mohy, A.H.: Computing matrix functions. Acta Numer. 19, 159–208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liemert, A., Sandev, T., Kantz, H.: Generalized Langevin equation with tempered memory kernel. Phys. A 466, 356–369 (2017)

    Article  MathSciNet  Google Scholar 

  36. Lino, P., Maione, G.: Design and simulation of fractional-order controllers of injection in CNG engines. IFAC Proc. Vol. (IFAC-PapersOnline), 582–587 (2013)

  37. Lino, P., Maione, G.: Fractional order control of the injection system in a CNG engine. In: 2013 European Control Conference, ECC 2013, 3997–4002 (2013)

  38. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Mainardi, F., Mura, A., Pagnini, G.: The \(M\)-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ. pp. Art. ID 104,505, 29 (2010)

  40. Matignon, D., d’Andréa Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. In: Computational Engineering in Systems Applications, Proceedings of the IMACS, IEEE SMC Conference, Lille, France, pp. 952–956 (1996)

  41. Matychyn, I., Onyshchenko, V.: Time-optimal control of fractional-order linear systems. Fract. Calc. Appl. Anal. 18(3), 687–696 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mittag-Leffler, M.G.: Sopra la funzione \({E}_{\alpha }(x)\). Rend. Accad. Lincei 13(5), 3–5 (1904)

    MATH  Google Scholar 

  43. Mittag-Leffler, M.G.: Sur la représentation analytique d’une branche uniforme d’une fonction monogène - cinquième note. Acta Math. 29(1), 101–181 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moret, I., Novati, P.: On the convergence of Krylov subspace methods for matrix Mittag-Leffler functions. SIAM J. Numer. Anal. 49(5), 2144–2164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. de Oliveira, D.S., Capelas de Oliveira, E., Deif, S.: On a sum with a three-parameter Mittag-Leffler function. Integral Transforms Spec. Funct. 27(8), 639–652 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Popolizio, M.: Numerical solution of multiterm fractional differential equations using the matrix Mittag-Leffler functions. Mathematics 1(6), 7 (2018)

    Article  MATH  Google Scholar 

  47. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19(1), 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  48. Rodrigo, M.R.: On fractional matrix exponentials and their explicit calculation. J. Differ. Equ. 261(7), 4223–4243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rogosin, S.: The role of the Mittag-Leffler function in fractional modeling. Mathematics 3(2), 368–381 (2015)

    Article  MATH  Google Scholar 

  50. Sandev, T.: Generalized Langevin equation and the Prabhakar derivative. Mathematics 5(4), 66 (2017)

    Article  MATH  Google Scholar 

  51. Stanislavsky, A., Weron, K.: Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements. Comput. Phys. Commun. 183(2), 320–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tomovski, Ž., Pogány, T.K., Srivastava, H.M.: Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity. J. Franklin Inst. 351(12), 5437–5454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Valério, D., Tenreiro Machado, J.: On the numerical computation of the Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3419–3424 (2014)

    Article  MathSciNet  Google Scholar 

  55. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comp. 76(259), 1341–1356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zeng, C., Chen, Y.: Global Padé approximations of the generalized Mittag-Leffler function and its inverse. Fract. Calc. Appl. Anal. 18(6), 1492–1506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Popolizio.

Additional information

This work is supported under the GNCS-INdAM 2017 Project “Analisi numerica per modelli descritti da operatori frazionari”.

R. Garrappa \(\cdot \) M. Popolizio: Member of the INdAM Research group GNCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrappa, R., Popolizio, M. Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus. J Sci Comput 77, 129–153 (2018). https://doi.org/10.1007/s10915-018-0699-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0699-5

Keywords

Navigation