Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 135))

  • 292 Accesses

Abstract

We construct a new numerical method comprising upwind finite difference operators on asymptotically appropriate Shishkin meshes to obtain a numerical approximation to the solution of the Hemker problem. Numerical results indicate that the numerical approximations are computationally uniformly convergent with respect to the small parameter ε.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let \(U_\varepsilon ^N\) be the computed solutions on certain meshes \(\varOmega _\varepsilon ^N\). Define the maximum two-mesh global differences by

    $$\displaystyle \begin{aligned} D^N_\varepsilon:= \Vert \bar U_\varepsilon^N-\bar U_\varepsilon^{2N}\Vert_{\varOmega_\varepsilon^N \cup \varOmega_\varepsilon^{2N}} \quad \text{and} \quad D^N:= \max_{\varepsilon} D^N_\varepsilon, \end{aligned} $$
    (2.3a)

    where \(\bar U^N\) denotes the bilinear interpolation of the discrete solution U N on the mesh \(\varOmega _\varepsilon ^{N}\). Then, for any particular value of ε and N, the computed orders of convergence are \(\bar p^{N}_\varepsilon \) and, for any particular value of N and all values of ε, the parameter-uniform computed orders of convergence \(\bar p^N\) are defined, respectively, by

    $$\displaystyle \begin{aligned} \bar p^N_\varepsilon:= \log_2\left (\frac{D^N_\varepsilon}{D^{2N}_\varepsilon} \right) \quad \text{and} \quad \bar p^N := \log_2\left (\frac{D^N}{D^{2N}} \right). \end{aligned} $$
    (2.3b)

References

  1. Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linke, A., Umla, R.: An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 200(47–48), 3395–3409 (2011)

    Article  MathSciNet  Google Scholar 

  2. Farrell, P.A., Hegarty, A.F.: On the determination of the order of uniform convergence. In: Proceedings of the 13th IMACS World Congress, Dublin, pp. 501–502 (1991)

    Google Scholar 

  3. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman and Hall/CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  4. Han, H., Huang, Z., Kellogg, R.B.: A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comput. 36(2), 243–261 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hegarty, A.F., O’Riordan, E.: Numerical results for singularly perturbed convection-diffusion problems on an annulus. In: Huang, Z., Stynes, M., Zhang, Z. (eds.) Proceedings of the International Conference on Boundary and Interior Layers - Computational and Asymptotic Methods, BAIL 2016, Beijing, August 2016. Lecture Notes in Computational Science and Engineering, vol. 120, pp. 101–112. Springer, New York (2017)

    Google Scholar 

  6. Hegarty, A.F. O’Riordan, E.: A parameter-uniform numerical method for a singularly perturbed convection-diffusion problem posed on an annulus. Comput. Math. Appl. 78(10), 3329–3344 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hemker, P.W.: A singularly perturbed model problem for numerical computation. J. Comp. Appl. Math. 76, 277–285 (1996)

    Article  MathSciNet  Google Scholar 

  8. Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Mathematical Monographs, vol. 102. American Mathematical Society, Providence (1992)

    Google Scholar 

  9. Lagerstrom, P.A.: Matched Asymptotic Expansions: Ideas and Techniques. Applied Mathematical Sciences, vol. 76. Springer, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Hegarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hegarty, A.F., O’Riordan, E. (2020). A Numerical Method for the Hemker Problem. In: Barrenechea, G., Mackenzie, J. (eds) Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018. Lecture Notes in Computational Science and Engineering, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-030-41800-7_6

Download citation

Publish with us

Policies and ethics