Skip to main content
Log in

Two-Level Newton’s Method for Nonlinear Elliptic PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A combination method of Newton’s method and two-level piecewise linear finite element algorithm is applied for solving second-order nonlinear elliptic partial differential equations numerically. Newton’s method is to find a finite element solution by solving \(m\) Newton equations on a fine mesh. The two-level Newton’s method solves \(m-1\) Newton equations on a coarse mesh and processes one Newton iteration on a fine mesh. Moreover, the optimal error estimates of Newton’s method and the two-level Newton’s method are provided to justify the efficiency of the two-level Newton’s method. If we choose \(H\) such that \(h=O(|\log h|^{1-2/{p}}H^2)\) for the \(W^{1,p}(\Omega )\)-error estimates, the two-level Newton’s method is asymptotically as accurate as Newton’s method on the fine mesh. Meanwhile, the numerical investigations provided a sufficient support for the theoretical analysis. Finally, these investigations also proved that the proposed method is efficient for solving the nonlinear elliptic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dennis Jr, J.E., Moré, J.J.: Quasi-Newton methods. Numer. Math. 11, 324–330 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dennis Jr, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MATH  Google Scholar 

  4. Douglas Jr, J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Rose, D.J.: Analysis of a multilevel interative method for nonlinear finite element equations. Math. Comput. 39, 453–465 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, J.C.: A novel two two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, J.C.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MATH  Google Scholar 

  9. Layton, W.: A two-level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 26, 33–38 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Layton, W., Tobiska, L.: A two-level method with backtraking for the Navier–Stokes equations. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Layton, W., Leferink, H.W.J.: Two-level Picard and modified Picard Methods for the Navier–Stokes equations. Appl. Math. Comput. 69, 263–274 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Girault, V., Lions, J.L.: Two-grid finite element scheme for the steady Navier–Stokes equations in polyhedra. Port. Math. 58, 25–57 (2001)

    MathSciNet  MATH  Google Scholar 

  13. He, Y., Li, J., Yang, X.: Two-level penalized finite element methods for the stationary Navier–Stokes equations. Int. J. Inf. Syst. Sci. 2, 131–143 (2006)

    MathSciNet  MATH  Google Scholar 

  14. He, Y., Li, K.: Two-level stabilized finite element methods for the steady Navier–Stokes problem. Computing 74, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Y., Wang, A.: A simplified two-level for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008)

    Article  MATH  Google Scholar 

  16. Layton, W., Leferink, H.W.J.: A multilevel mesh independence principle for the Navier–Stokes equations. SIAM J. Numer. Anal. 33, 17–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Layton, W., Lee, H.K., Peterson, J.: Numerical solution of the stationary Navier–Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput. 20, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  18. Girault, V., Lions, J.L.: Two-grid finite element scheme for the transient Navier–Stokes problem. Math. Model. Numer. Anal. 35, 945–980 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olshanskii, M.A.: Two-level method and some a priori estimates in unsteady Navier–Stokes calculations. J. Comput. Appl. Math. 104, 173–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, Y.: Two-level method based on finite element and Crank–Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Y.: A two-level finite element Galerkin method for the nonstationary Navier–Stokes equations, I: spatial discretization. J. Comput. Math. 22, 21–32 (2004)

    MathSciNet  MATH  Google Scholar 

  22. He, Y., Miao, H., Ren, C.: A two-level finite element Galerkin method for the nonstationary Navier–Stokes equations, II: time discretization. J. Comput. Math. 22, 33–54 (2004)

    MathSciNet  MATH  Google Scholar 

  23. He, Y., Liu, K.M.: Multi-level spectral Galerkin method for the Navier–Stokes equations II: time discretization. Adv. Comput. Math. 25, 403–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, Y., Liu, K.M., Sun, W.W.: Multi-level spectral Galerkin method for the Navier–Stokes equations I: spatial discretization. Numer. Math. 101, 501–522 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, Y., Liu, K.M.: A multi-level finite element method in space-time for the Navier–Stokes equations. Numer. Methods PDEs 21, 1052–1078 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Adams, R.A.: Sobolev Space. Academic Press, New York (1975)

    Google Scholar 

  27. Grisvard, P.: Elliptic Problem in Nonsmooth Domains. Pitman, Boston (1985)

    Google Scholar 

  28. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  29. Schartz, A.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  Google Scholar 

  30. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximation. Math. Comput. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thomée, V., Xu, J., Zhang, N.: Superconvergence of gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal. 26, 553–573 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, H., He, Y.: Some iterative finite element methods for steady Navier–Stokes equations with different viscosities. J. Comput. Phys. 232, 136–152 (2013)

    Google Scholar 

Download references

Acknowledgments

This study subsidized by the NSF of China (No. 11271298). The authors would like to thank the editor and referees for their valuable comments and suggestions which helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Zhang, Y. & Xu, H. Two-Level Newton’s Method for Nonlinear Elliptic PDEs. J Sci Comput 57, 124–145 (2013). https://doi.org/10.1007/s10915-013-9699-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9699-7

Keywords

Mathematics Subject Classification

Navigation