Skip to main content
Log in

Two-Grid Methods for a New Mixed Finite Element Approximation of Semilinear Parabolic Integro-Differential Equations

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a two-grid scheme for a semilinear parabolic integro-differential equation using a new mixed finite element method. The gradient for the method belongs to the square integrable space instead of the classical H(div; Ω) space. The velocity and the pressure are approximated by the P02–P1 pair which satisfies the inf-sup condition. Firstly, we solve an original nonlinear problem on the coarse grid in our two-grid scheme. Then, to linearize the discretized equations, we use Newton iteration on the fine grid twice. It is shown that the algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfy h = O(H6|lnH|2). As a result, solving such a large class of nonlinear equations will not be much more difficult than the solution of one linearized equation. Finally, a numerical experiment is provided to verify theoretical results of the two-grid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, New York: Springer-Verlag, 1991.

    Book  MATH  Google Scholar 

  2. Bi, C. and Ginting, V., Two-Grid Finite Volume Element Method for Linear and Nonlinear Elliptic Problems, Num. Math., 2007, vol. 108, iss. 2, pp. 177–198.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bi, C. and Ginting, V., Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems, J. Sci. Comput., 2011, vol. 49, no. 3, pp. 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L. and Chen, Y., Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods, J. Sci. Comput., 2011, vol. 49, no. 3, pp. 383–401.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Huang, Y., and Yu, D., A Two-Grid Method for Expanded Mixed Finite-Element Solution of Semilinear Reaction-Diffusion Equations, Int. J. Num. Meth. Eng., 2003, vol. 57, iss. 2, pp. 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Liu, H., and Liu, S., Analysis of Two-Grid Methods for Reaction-Diffusion Equations by Expanded Mixed Finite Element Methods, Int. J. Num. Meth. Eng., 2007, vol. 69, pp. 408–422.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cannon, J.R. and Lin, Y., A Priori L 2 Error Estimates for Finite-Element Methods for Nonlinear Diffusion Equations with Memory, SIAM J. Num. An., 1990, vol. 27, pp. 595–607.

    Article  MATH  Google Scholar 

  8. Chen, S.C. and Chen, H.R., New Mixed Element Schemes for a Second-Order Elliptic Problem, Math. Num. Sin., 2010, vol. 32, no. 2, pp. 213–218.

    MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.

    MATH  Google Scholar 

  10. Dawson, C., Wheeler, M.F., and Woodward, C.S., A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations, SIAM J. Num. An., 1998, vol. 35, pp. 435–452.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dawson, C.N. and Wheeler, M.F., Two-Grid Methods for Mixed Finite Element Approximations of Nonlinear Parabolic Equations, Cont. Math., 1994, vol. 180, pp. 191–203.

    Article  MathSciNet  MATH  Google Scholar 

  12. Douglas, J. and Roberts, J.E., Global Estimates for Mixed Methods for Second-Order Elliptic Equations, Math. Comp., 1985, vol. 44, pp. 39–52.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R.E., Lin, Y.P., Sun, T., Wang, J.P., and Zhang, S.H., Sharp L 2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media, SIAM J. Num. An., 2002, vol. 40, no. 4, pp. 1538–1560.

    Article  MATH  Google Scholar 

  14. Yanik, E.G. and Fairweather, G., Finite Element Methods for Parabolic and Hyperbolic Partial Integro-Differential Equations, Nonlin. An., 1988, vol. 12, pp. 785–809.

    Article  MathSciNet  MATH  Google Scholar 

  15. Grisvard P., Elliptic Problems in Nonsmooth Domains, Boston: Pitman Advanced Pub., 1985.

    MATH  Google Scholar 

  16. Huang, Y., Shi, Z.H., Tang, T., and Xue, W., A Multilevel Successive Iteration Method for Nonlinear Elliptic Problems, Math. Comp., 2004, vol. 73, no. 246, pp. 525–539.

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y. and Xue, W., Convergence of Finite Element Approximations and Multilevel Linearization for Ginzburg–Landau Model of d-Wave Superconductors, Adv. Comp. Math., 2002, vol. 17, pp. 309–330.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Y., Galerkin Methods for Nonlinear Parabolic Integrodifferential Equations with Nonlinear Boundary Conditions, SIAM J. Num. An., 1990, vol. 27, pp. 608–621.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pani, A.K., An H 1-Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations, SIAM J. Num. An., 1998, vol. 35, no. 2, pp. 712–727.

    Article  MATH  Google Scholar 

  20. Pani, A.K. and Fairweather, G., H 1-Galerkin Mixed Finite Element Method for Parabolic Partial Integro-Differential Equations, IMA J. Num. An., 2002, vol. 22, pp. 231–252.

    Article  MATH  Google Scholar 

  21. Russell, T.F., Time Stepping along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media, SIAM J. Num. An., 1985, vol. 22, no. 5, pp. 970–1013.

    Article  MathSciNet  MATH  Google Scholar 

  22. Raviart, P.A. and Thomas, J.M., A Mixed Finite Element Method for Second Order Elliptic Problems, in Mathematical Aspects of Finite Element Methods, Berlin: Springer, 1977, pp. 292–315 (Lect. Notes Math., vol. 606).

    Chapter  Google Scholar 

  23. Shi, F., Yu, J.P., and Li, K.T., A New Stabilized Mixed Finite-Element Method for Poisson Equation Based on Two Local Gauss Integrations for Linear Element Pair, Int. J. Comp. Math., 2011, vol. 88, pp. 2293–2305.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sinha, R.K., Ewing, R.E., and Lazarov, R.D., Mixed Finite Element Approximations of Parabolic Integro-Differential Equations with Nonsmooth Initial Data, SIAM J. Num. An., 2009, vol. 47, no. 5, pp. 3269–3292.

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomée, V. and Zhang, N.Y., Error Estimates for Semidiscrete Finite Element Methods for Parabolic Integro-Differential Equations, Math. Comp., 1989, vol. 53, pp. 121–139.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, L. and Allen, M.B., A Two-Grid Method for Mixed Finite-Element Solution of Reaction-Diffusion Equations, Num. Methods Partial Diff. Eqs., 1999, vol. 15, pp. 317–332.

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, J., A Novel Two-Grid Method for Semilinear Elliptic Equations, SIAM J. Sci. Comp., 1994, vol. 15, pp. 231–237.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., Two-Grid Discretization Techniques for Linear and Nonlinear PDEs, SIAM J. Num. An., 1996, vol. 33, no. 5, pp. 1759–1777.

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J. and Zhou, A., A Two-Grid Discretization Scheme for Eigenvalue Problems, Math. Comp., 2001, vol. 70, pp. 17–25.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Liu or T. Hou.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2019, Vol. 22, No. 2, pp. 167–185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Hou, T. Two-Grid Methods for a New Mixed Finite Element Approximation of Semilinear Parabolic Integro-Differential Equations. Numer. Analys. Appl. 12, 137–154 (2019). https://doi.org/10.1134/S1995423919020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423919020046

Key words

Navigation