Skip to main content
Log in

Adaptive Multiresolution Methods for the Simulation of Waves in Excitable Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present fully adaptive multiresolution methods for a class of spatially two-dimensional reaction-diffusion systems which describe excitable media and often give rise to the formation of spiral waves. A novel model ingredient is a strongly degenerate diffusion term that controls the degree of spatial coherence and serves as a mechanism for obtaining sharper wave fronts. The multiresolution method is formulated on the basis of two alternative reference schemes, namely a classical finite volume method, and Barkley’s approach (Barkley in Phys. D 49:61–70, 1991), which consists in separating the computation of the nonlinear reaction terms from that of the piecewise linear diffusion. The proposed methods are enhanced with local time stepping to attain local adaptivity both in space and time. The computational efficiency and the numerical precision of our methods are assessed. Results illustrate that the fully adaptive methods provide stable approximations and substantial savings in memory storage and CPU time while preserving the accuracy of the discretizations on the corresponding finest uniform grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 7, 293–301 (1996)

    Article  Google Scholar 

  2. Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)

    Article  Google Scholar 

  3. Barkley, D.: Spatial meandering. In: Kapral, R., Showalter, D. (eds.) Chemical Waves and Patterns, pp. 163–190. Kluwer, Dordrecht (1995)

    Google Scholar 

  4. Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. (2010, to appear)

  5. Bendahmane, M., Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems. Appl. Numer. Math. 59, 1668–1692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bendahmane, M., Bürger, R., Ruiz-Baier, R., Urbano, J.M.: On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding. Math. Methods Appl. Sci. 32, 1704–1737 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18, 315–354 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bürger, R., Ruiz-Baier, R., Schneider, K., Sepúlveda, M.: Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension. M2AN Math. Model. Numer. Anal. 42, 535–563 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X., Gao, C.: Well-posedness of a free boundary problem in the limit of slow-diffusion fast-reaction systems. J. Partial Differ. Equ. 19, 48–79 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23, 805–823 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chiavassa, G., Donat, R., Müller, S.: Multiresolution-based adaptive schemes for hyperbolic conservation laws. In: Plewa, T., Linde, T., Weirs, V.G. (eds.) Adaptive Mesh Refinement—Theory and Applications, pp. 137–159. Springer, Berlin (2003)

    Google Scholar 

  13. Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003)

    MATH  Google Scholar 

  14. Cohen, A., Kaber, S., Postel, M.: Multiresolution analysis on triangles: application to conservation laws. In: Vielsmeier, R., Benkhaldoun, F., Hanel, D. (eds.) Finite Volumes for Complex Applications II. Hermès, Paris (1999)

    Google Scholar 

  15. Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88, 399–443 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Domingues, M., Gomes, S., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time–stepping for evolutionary PDEs. J. Comput. Phys. 227, 3758–3780 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dowle, M., Mantel, R.M., Barkley, D.: Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurc. Chaos 7, 2529–2545 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  19. Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92, 41–82 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fenton, F., Karma, A.: Vortex dynamics in 3D continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998)

    Article  MATH  Google Scholar 

  21. Giga, Y., Goto, S., Ishii, H.: Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal. 23, 821–835 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goldstein, R.E.: Traveling-wave chemotaxis. Phys. Rev. Lett. 77, 775–778 (1996)

    Article  Google Scholar 

  23. Goryachev, A., Kapral, R.: Spiral waves in chaotic systems. Phys. Rev. Lett. 76, 1619–1622 (1996)

    Article  Google Scholar 

  24. Goryachev, A., Kapral, R.: Spiral waves in media with complex-excitable dynamics. Int. J. Bifurc. Chaos 11, 2243–2247 (1999)

    Google Scholar 

  25. Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 34, 515–523 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Heineken, W., Warnecke, G.: Partitioning methods for reaction-diffusion problems. Appl. Numer. Math. 56, 981–1000 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Herrero, M.A., Sastre, L.: Models of aggregation in Dictyostelium discoideum: on the track of spiral waves. Netw. Heterog. Media 1, 241–258 (2006)

    MATH  MathSciNet  Google Scholar 

  29. Höfer, T., Sherratt, J.A., Maini, P.K.: Cellular pattern formation during Dictyostelium aggregation. Physica D 85, 425–444 (1995)

    Article  MATH  Google Scholar 

  30. Holden, H., Karlsen, K.H., Risebro, N.H.: On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations. Electron. J. Differ. Equ. 2003, 1–31 (2003)

    MathSciNet  Google Scholar 

  31. Hoyle, R.: Pattern Formation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  32. Hu, G., Xiao, J., Chua, L.O., Piska, L.: Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80, 1998 (1884–1887)

    Google Scholar 

  33. Jomaas, G., Bechtold, J.K., Lawa, C.K.: Spiral waves in expanding hydrogen-air flames: Experiment and theory. Proc. Combust. Inst. 31, 1039–1046 (2007)

    Article  Google Scholar 

  34. Karlsen, K.H., Risebro, N.H.: Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. M2AN Math. Model. Numer. Anal. 35, 239–269 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Keener, J.: Arrhythmias by dimension. In: Proc. Symp. Appl. Math. vol. 59, pp. 57–81. Am. Math. Soc., Providence (2002)

    Google Scholar 

  36. Keener, J., Sneyd, J.: Mathematical Physiology. I: Cellular Physiology, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  37. Keener, J., Sneyd, J.: Mathematical Physiology. II: Systems Physiology, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  38. Lee, K.J., Goldstein, R.E., Cox, E.C.: cAMP waves in Dictyostelium territories. Nonlinearity 15, C1–C5 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Margerit, D., Barkley, D.: Cookbook asymptotics for spiral and scroll waves in excitable media. Chaos 12, 636–649 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mascia, C., Porretta, A., Terracina, A.: Non-homogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163, 87–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Michel, A., Vovelle, J.: Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41, 2262–2293 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mikhailov, A.S., Showalter, K.: Control of waves patterns and turbulence in chemical systems. Phys. Rep. 425, 79–194 (2006)

    Article  MathSciNet  Google Scholar 

  43. Mitchell, A.: On the crest of a spiral wave. Nature 389, 547 (1997)

    Article  Google Scholar 

  44. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003)

    MATH  Google Scholar 

  45. Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30, 493–531 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Murray, J.D.: Mathematical Biology. II: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)

    Google Scholar 

  47. Olmos, D., Shizgal, B.D.: Pseudospectral method of solution of the FitzHugh-Nagumo equation. Math. Comput. Simul. 79, 2258–2278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Panfilov, V., Bayliss, A., Matkowsky, B.J.: Spiral flames. Appl. Math. Lett. 16, 131–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Pérez-Muñuzuri, A., Pérez-Muñuzuri, V., Pérez-Villar, V., Chua, L.O.: Spiral waves on a 2-D array of nonlinear circuits. IEEE Trans. Circuits Syst. 40, 872–877 (1993)

    Article  MATH  Google Scholar 

  50. Ramos, J.I.: Spiral wave break-up and planar front formation in two-dimensional reactive-diffusive media with straining. Appl. Math. Comput. 154, 697–711 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188, 493–523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  52. Shajahan, T.K., Sinha, S., Pandit, R.: Spiral-wave dynamics depends sensitively on inhomogeneities in mathematical models of ventricular tissue. Phys. Rev. E 75, 011929 (2007)

    Article  MathSciNet  Google Scholar 

  53. Shardlow, T.: Numerical simulation of stochastic PDEs for excitable media. J. Comput. Appl. Math. 175, 429–446 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  54. Scheel, A.: Bifurcation to spiral waves in reaction-diffusion systems. SIAM J. Math. Anal. 29, 1399–1418 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  55. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  56. Tomchik, K.J., Devreotes, P.N.: Adenosine 3′,5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212, 443–446 (1981)

    Article  Google Scholar 

  57. Tung, L.: Electroporation of cardiac cells. In: Nickoloff, J.A. (ed.) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol. 48, pp. 253–271 (1995)

  58. Tyson, J.J., Murray, J.D.: Cyclic AMP waves during aggregation of Dictyostelium amoebae. Development 106, 421–426 (1989)

    Google Scholar 

  59. Rauch, J.: Global existence for the FitzHugh-Nagumo equations. Commun. Partial Differ. Equ. 1, 609–621 (1976)

    Article  MathSciNet  Google Scholar 

  60. van Oss, C., Panfilov, A.V., Hogeweg, P., Siegert, F., Weijer, C.J.: Spatial pattern formation during aggregation of the slime mold Dictyostelium discoideum. J. Theor. Biol. 181, 203–213 (1996)

    Article  Google Scholar 

  61. Vanag, V.K., Epstein, I.R.: Segmented spiral waves in a reaction-diffusion system. Proc. Natl. Acad. Sci. 100, 14635–14638 (2003)

    Article  Google Scholar 

  62. Weiser, M.: Pointwise nonlinear scaling for reaction-diffusion equations. Appl. Numer. Math. 59, 2009 (1858–1869)

    MathSciNet  Google Scholar 

  63. Winfree, A.T.: The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984)

    Article  Google Scholar 

  64. Witelski, T.P.: Segregation and mixing in degenerate diffusion in population dynamics. J. Math. Biol. 35, 695–712 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  65. Xu, W., Hu, D., Lei, A., Li, Q.S.: Single spiral wave induced by noise. Appl. Math. Comput. 171, 703–709 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  66. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

  67. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 1, 379–386 (1991)

    Article  Google Scholar 

  68. Zhang, H., Hu, B., Hu, G.: Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media. Phys. Rev. E 68, 026134 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ruiz-Baier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, R., Ruiz-Baier, R. & Schneider, K. Adaptive Multiresolution Methods for the Simulation of Waves in Excitable Media. J Sci Comput 43, 261–290 (2010). https://doi.org/10.1007/s10915-010-9356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9356-3

Keywords

Navigation