Skip to main content
Log in

A reaction–diffusion approximation of a semilinear wave equation with damping

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A reaction–diffusion approximation is a method that solutions of multi-component reaction–diffusion systems approximate those of differential equations. We introduce the reaction–diffusion approximations of a semilinear wave equation and a semilinear damped wave equation under some assumptions of a reaction term. These approximation systems consist of a two-component reaction–diffusion system with a small parameter. In this paper, we prove that a first component of a solution for the system converges to a solution for the semilinear damped wave equation as the parameter tends to zero. Moreover, let us show the numerical results of reaction–diffusion approximation for the wave equation and the damped wave equation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brenner, P.: On space–time means and strong global solutions of nonlinear hyperbolic equations. Math. Z. 201, 45–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)

    MATH  Google Scholar 

  3. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein–Gordon equation. Math. Z. 189, 487–505 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hilhorst, D., van der Hout, R., Peletier, L.: The fast reaction limit for a reaction–diffusion system. J. Math. Anal. Appl. 199, 349–373 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Holmes, E.E.: Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142, 779–795 (1993)

    Article  Google Scholar 

  6. Iida, M., Mimura, M., Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53, 617–641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iida, M., Ninomiya, H.: A reaction–diffusion approximation to a cross-diffusion system. In: Chipot, M., Ninomiya, E.H. (eds.) Recent Advances on Elliptic and Parabolic Issues, pp. 145–164. World Scientific, Singapore (2006)

    Chapter  Google Scholar 

  8. Iida, M., Ninomiya, H., Yamamoto, H.: A review on reaction–diffusion approximation. J. Elliptic Parabol. Equ. 4, 565–600 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawashima, S., Nakao, M., Ono, K.: On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term. J. Math. Soc. Jpn. 47, 617–653 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (1995)

    Book  Google Scholar 

  11. Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. Res. Inst. Math. Sci. 12, 169–189 (1976/77)

  12. Murakawa, H.: Reaction–diffusion system approximation to degenerate parabolic systems. Nonlinearity 20, 2319–2332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murakawa, H., Nakaki, T.: A singular limit method for the Stefan problems. In: Numerical Mathematics and Advanced Applications, pp. 651–657. Springer, Berlin (2004)

  14. Ninomiya, H., Tanaka, Y., Yamamoto, H.: Reaction, diffusion and non-local interaction. J. Math. Biol. 75, 1203–1233 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ninomiya, H., Tanaka, Y., Yamamoto, H.: Reaction–diffusion approximation of nonlocal interactions using Jacobi polynomials. Jpn. J. Ind. Appl. Math. 35, 613–651 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ninomiya, H., Yamamoto, H.: A reaction–diffusion approximation of a semilinear wave equation. J. Differ. Equ. 272, 289–309 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nishihara, K.: \(L^p\)-\(L^q\) estimates of solutions to the damped wave equation in 3-dimensional space and their application. Math. Z. 244, 631–649 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strauss, W.A.: Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics, vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington; by the American Mathematical Society, Providence (1989)

  19. Wakasugi, Y.: Small data global existence for the semilinear wave equation with space-time dependent damping. J. Math. Anal. Appl. 393, 66–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research of the author is partially supported by JSPS KAKENHI Grant No. JP19K14588. The research is derived from a joint work with Hirokazu Ninomiya of Meiji University in [16]. The author would like to thank Hirokazu Ninomiya for many important discussions. Also, numerical calculations in this paper are by Ayuki Sekisaka of Meiji University. The author would like to thank you for his supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Sekisaka-Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Proposition 1

Appendix: Proof of Proposition 1

Proof

If \((v_1,v_2)\) is a smooth solution of (13) with respect to time \(t \in [0,T]\) and spatial variable \(x \in {\mathbb {R}}^N\), then \(v_1\) satisfies the Eq. (14). By a priori estimate of (14), we shall prove Proposition 1. Multiplying (14) by \(v_{1,t}\) and integrating it over \({\mathbb {R}}^N\), we calculate it as follows:

$$\begin{aligned}&\frac{d}{dt} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx +\frac{d_1d_2}{2} \varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx +\frac{d + ad_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx -\int _{{\mathbb {R}}^N} F(v_1) \,dx \right] \\&\quad = -a \int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx -( d_1 +d_2 ) \varepsilon \int _{{\mathbb {R}}^N} | \nabla v_{1,t} |^2 \,dx \, \le \, 0. \end{aligned}$$

Here, \(a \ge 0\) was used. Integrating the above differential inequality over [0, t], we see that

$$\begin{aligned}&\frac{1}{2} \int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx +\frac{d_1d_2}{2} \varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx +\frac{d + ad_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx -\int _{{\mathbb {R}}^N} F(v_1) \,dx \le C, \end{aligned}$$

where C is a positive constant depending on the initial data \(w_0 \in H^2({\mathbb {R}}^N)\) and \(w_1 \in L^2({\mathbb {R}}^N)\). Since \(-f_3 |v_1|^2 \le -F(v_1)\) from (7), it holds that

$$\begin{aligned} \begin{aligned}&\frac{1}{2} \int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx +\frac{d_1d_2}{2} \varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx +\frac{d + ad_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx \le f_3 \int _{{\mathbb {R}}^N} v_1^2 \,dx +C. \end{aligned} \end{aligned}$$
(22)

We note that \(v_{1,t}\), \(\varepsilon \varDelta v_1\) and \(|\nabla v_1|\) are bounded in \(L^2({\mathbb {R}}^N)\) and \(v_1\) is bounded in \(L^{p+1}({\mathbb {R}}^N)\) for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\) if the \(L^2\)-norm of \(v_1\) is bounded for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\).

Next, multiplying (14) by \(v_1\) and integrating it over [0, t], we see that

$$\begin{aligned}&\frac{d^2}{dt^2} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} v_1^2 \,dx \right] +\frac{d}{dt} \left[ \frac{(d_1+d_2) \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx \right] \\&\quad = -a \int _{{\mathbb {R}}^N} v_1 v_{1,t} \,dx +\int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx -d_1d_2\varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx -(d+ad_1\varepsilon ) \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx +\int _{{\mathbb {R}}^N} f(v_1)v_1 \,dx. \end{aligned}$$

Since (6) and \(|v_1v_{1,t}| \le \frac{1}{2} ( v_1^2 +v_{1,t}^2 )\) hold, we estimate the above identity as follows:

$$\begin{aligned}&\frac{d^2}{dt^2} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} v_1^2 \,dx \right] +\frac{d}{dt} \left[ \frac{(d_1+d_2) \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx \right] \\&\quad \le C\int _{{\mathbb {R}}^N} v_1^2 \,dx +C\int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx -d_1d_2\varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx -(d+ad_1\varepsilon ) \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx \\&\quad \le C\int _{{\mathbb {R}}^N} v_1^2 \,dx +C\int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx. \end{aligned}$$

From (22), We note \(\int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx \le C\int _{{\mathbb {R}}^N} v_1^2 \,dx+C\). Hence, we have that

$$\begin{aligned}&\frac{d^2}{dt^2} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} v_1^2 \,dx \right] +\frac{d}{dt} \left[ \frac{(d_1+d_2) \varepsilon }{2} \int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx \right] \le C \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} v_1^2 \,dx \right] +C, \end{aligned}$$

where C is depending on \(f_1,f_3,a,T,\varepsilon _0\) and the initial data \(w_0,w_1\). By [16, Lemma 2.2], there exists a constant \(C > 0\) such that for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\),

$$\begin{aligned} \int _{{\mathbb {R}}^N} v_1(t,x)^2 \,dx \le C. \end{aligned}$$
(23)

Therefore, by (22) and (23), we obtained the following boundedness with respect to \(v_1\) for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\):

$$\begin{aligned}&\int _{{\mathbb {R}}^N} v_1^2 \,dx,&\int _{{\mathbb {R}}^N} | \nabla v_1 |^2 \,dx,&\int _{{\mathbb {R}}^N} v_{1,t}^2 \,dx \quad \text { and}&\varepsilon ^2 \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx. \end{aligned}$$
(24)

From here, we shall show the boundedness of \(\int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx\) and \(\int _{{\mathbb {R}}^N} (\varDelta v_1)^2 \,dx\) for any t and \(\varepsilon\). Multiplying (14) by \(-\varDelta v_{1,t}\) and integrating it over \({\mathbb {R}}^N\) yield that

$$\begin{aligned}&\frac{d}{dt} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1)|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1)^2 \,dx \right] \\& \quad = -a \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx -(d_1 +d_2) \varepsilon \int _{{\mathbb {R}}^N} ( \varDelta v_{1,t} )^2 \,dx +\int _{{\mathbb {R}}^N} f^{\prime }(v_1) \nabla v_1 \cdot \nabla v_{1,t} \,dx. \end{aligned}$$

Since \(a \ge 0\), \(|f^{\prime }(v_1) \nabla v_1 \cdot \nabla v_{1,t}| \le \frac{1}{2} ( |\nabla v_{1,t}|^2 +| f^{\prime }(v_1)|^2 |\nabla v_1|^2 )\) and (8) hold, we estimate the previous equation as follows:

$$\begin{aligned}&\frac{d}{dt} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1)|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1)^2 \,dx \right] \\&\quad \le \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{1}{2} \int _{{\mathbb {R}}^N} | f^{\prime }(v_1)|^2 |\nabla v_1|^2 \,dx \\&\quad \le \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{1}{2} \int _{{\mathbb {R}}^N} \left( f_4+f_5 |v_1|^{p-1} \right) ^2 |\nabla v_1|^2 \,dx \\&\quad \le \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +f_4^2 \int _{{\mathbb {R}}^N} |\nabla v_1|^2 \,dx +f_5^2 \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx. \end{aligned}$$

Since the integrals in (24) are bounded for t and \(\varepsilon\), we have that

$$\begin{aligned} \begin{aligned}&\frac{d}{dt} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1)|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1)^2 \,dx \right] \\&\quad \le \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +f_5^2 \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx +C. \end{aligned} \end{aligned}$$
(25)

Here, let us show

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx \le C +C \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx. \end{aligned}$$
(26)

(i) The case of \(N \ge 3\) and \(2 \le N(p-1) \le \frac{2N}{N-2}\): Note that this case satisfies the condition (10). By the Hölder inequality and the Sobolev inequality, we can estimate the integral \(\int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx\) as follows:

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx&\le \left( \int _{{\mathbb {R}}^N} |v_1|^{N(p-1)} \,dx \right) ^{\frac{2}{N}} \left( \int _{{\mathbb {R}}^N} |\nabla v_1|^{\frac{2N}{N-2}} \,dx \right) ^{\frac{N-2}{N}} \\&\le \Vert v_1 \Vert _{L^{N(p-1)}({\mathbb {R}}^N)}^{2(p-1)} \, \cdot \, C_S \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2. \end{aligned}$$

Here, by (24) and the Sobolev inequality, we have the boundedness of \(\Vert v_1\Vert _{H^1({\mathbb {R}}^N)}\) for \(t,\varepsilon\), and hence \(\Vert v_1\Vert _{L^{\frac{2N}{N-2}}({\mathbb {R}}^N)}\) are bounded. From the boundedness of \(\Vert v_1\Vert _{L^2({\mathbb {R}}^N)}\) and \(\Vert v_1\Vert _{L^{ \frac{2N}{N-2} }({\mathbb {R}}^N)}\) and

$$\begin{aligned} 2 \le N(p-1) \le \frac{2N}{N-2}, \end{aligned}$$

we see that \(\Vert v_1 \Vert _{L^{N(p-1)}({\mathbb {R}}^N)}^{2(p-1)}\) is bounded. Moreover, by a calculation of [, p. 302], it follows that16

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx&\le C \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2 = C \left( \Vert \nabla v_1 \Vert _{L^2({\mathbb {R}}^N)}^2 +\Vert D^2 v_1 \Vert _{L^2({\mathbb {R}}^N)}^2 \right) \\&\le C \left( \Vert \nabla v_1 \Vert _{L^2({\mathbb {R}}^N)}^2 +\Vert \varDelta v_1 \Vert _{L^2({\mathbb {R}}^N)}^2 \right) \end{aligned}$$

where \(\Vert D^2 v_1 \Vert _{L^2({\mathbb {R}}^N)}^2 = \int _{{\mathbb {R}}^N} |D^2 v_1|^2 \,dx\) and \(|D^2 v_1|^2 = \sum _{i,j=1}^{N} |\frac{\partial ^2 v_1}{\partial x_i \partial x_j}|^2\). Hence, since \(\Vert \nabla v_1 \Vert _{L^2({\mathbb {R}}^N)}^2\) is bounded, it is obtained that

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx&\le C+C \Vert \varDelta v_1 \Vert _{L^2({\mathbb {R}}^N)}^2. \end{aligned}$$

We complete the proof of (26) in the case of \(N \ge 3\) and \(2 \le N(p-1) \le \frac{2N}{N-2}\).

(ii) The case of \(N \ge 3\) and \(0< N(p-1) < 2\): Note that \(1-\frac{2}{N}< 2-p < 1\) and \(2< \frac{2}{2-p} < \frac{2N}{N-2}\). By the Hölder inequality and the Sobolev inequality, we have that

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx&\le \left( \int _{{\mathbb {R}}^N} |v_1|^2 \,dx \right) ^{p-1} \left( \int _{{\mathbb {R}}^N} |\nabla v_1|^{\frac{2}{2-p}} \,dx \right) ^{2-p} \\&\le \Vert v_1\Vert _{L^2({\mathbb {R}}^N)}^{2(p-1)} \, \Vert \nabla v_1 \Vert _{L^{\frac{2}{2-p}}({\mathbb {R}}^N)}^2 \\&\le \Vert v_1\Vert _{L^2({\mathbb {R}}^N)}^{2(p-1)} \, \cdot \, C_S \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2 \end{aligned}$$

By a similar calculation to the latter half of (i) and the boundedness of \(\Vert v_1\Vert _{L^2({\mathbb {R}}^N)}\) and \(\Vert \nabla v_1\Vert _{L^2({\mathbb {R}}^N)}\), we have \(\int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx \le C+C\Vert \varDelta v_1 \Vert _{L^2({\mathbb {R}}^N)}^2\) for \(N \ge 3\) and \(0< N(p-1) < 2\). Hence, (26) is shown in the case of \(N \ge 3\) and \(0< N(p-1) < 2\).

(iii) The case of \(N=1,2\): By using the Hölder inequality and the Sobolev inequality: \(\Vert u \Vert _{L^r({\mathbb {R}}^N)} \le C_S \Vert u \Vert _{H^1({\mathbb {R}}^N)}\) for \(2 \le r < \infty\), we have that

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx&\le \left( \int _{{\mathbb {R}}^N} |v_1|^{2(p+1)} \,dx \right) ^{\frac{p-1}{p+1}} \left( \int _{{\mathbb {R}}^N} |\nabla v_1|^{p+1} \,dx \right) ^{\frac{2}{p+1}} \\&\le \Vert v_1\Vert _{L^{2(p+1)}({\mathbb {R}}^N)}^{2(p-1)} \, \Vert \nabla v_1 \Vert _{L^{p+1}({\mathbb {R}}^N)}^2 \\&\le \Vert v_1\Vert _{L^{2(p+1)}({\mathbb {R}}^N)}^{2(p-1)} \, \cdot \, C_S \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2 \\&\le C \Vert v_1\Vert _{H^1({\mathbb {R}}^N)}^{2(p-1)} \, \cdot \, \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2 \end{aligned}$$

From (24), \(\Vert v_1\Vert _{H^1({\mathbb {R}}^N)}\) is bounded for any t and any \(\varepsilon\), so that it holds that

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx \le C \Vert \nabla v_1 \Vert _{H^1({\mathbb {R}}^N)}^2 \end{aligned}$$

By a similar discussion to the above, we proved that for \(N=1,2\),

$$\begin{aligned} \int _{{\mathbb {R}}^N} |v_1|^{2(p-1)} \, |\nabla v_1|^2 \,dx \le C +C \int _{{\mathbb {R}}^N} ( \varDelta v_1 )^2 \,dx. \end{aligned}$$

Thus, (26) was shown.

Next, by (25) and (26), it follows that

$$\begin{aligned}&\frac{d}{dt} \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1)|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1)^2 \,dx \right] \\&\quad \le C \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d+d_1 \varepsilon }{2}\int _{{\mathbb {R}}^N} |\varDelta v_1|^2 \,dx \right] +C \\&\quad \le C \left[ \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1)|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1)^2 \,dx \right] +C. \end{aligned}$$

Putting

$$\begin{aligned} X(t) = \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}(t,x)|^2 \,dx +\frac{d_1d_2 \varepsilon ^2}{2} \int _{{\mathbb {R}}^N} |\nabla ( \varDelta v_1(t,x))|^2 \,dx +\frac{d+d_1 \varepsilon }{2} \int _{{\mathbb {R}}^N} ( \varDelta v_1(t,x))^2 \,dx, \end{aligned}$$

we see that \(\frac{dX}{dt} \le CX +C\) for time t. Solving this differential inequality with respect to t, we have that \(X(t) \le X(0) e^{Ct} +e^{Ct}-1\) for \(t \in [0,T]\). Since X(0) is a positive constant depending on the initial data \(w_0 \in H^3({\mathbb {R}}^N)\) and \(w_1 \in H^1({\mathbb {R}}^N)\) and t belongs to the interval [0, T], we obtained that X(t) is bounded for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\). Hence, it is proved that

$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla v_{1,t}|^2 \,dx \qquad \text { and } \qquad \int _{{\mathbb {R}}^N} (\varDelta v_1)^2 \,dx \end{aligned}$$

are bounded for any \(t \in [0,T]\) and any \(\varepsilon \in (0,\varepsilon _0)\). Consequently, we complete the proof of Proposition 1. \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekisaka-Yamamoto, H. A reaction–diffusion approximation of a semilinear wave equation with damping. Japan J. Indust. Appl. Math. 39, 921–941 (2022). https://doi.org/10.1007/s13160-022-00536-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00536-9

Keywords

Mathematics Subject Classification

Navigation