Skip to main content
Log in

High Order Strong Stability Preserving Time Discretizations

  • Review Article
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Strong stability preserving (SSP) high order time discretizations were developed to ensure nonlinear stability properties necessary in the numerical solution of hyperbolic partial differential equations with discontinuous solutions. SSP methods preserve the strong stability properties—in any norm, seminorm or convex functional—of the spatial discretization coupled with first order Euler time stepping. This paper describes the development of SSP methods and the connections between the timestep restrictions for strong stability preservation and contractivity. Numerical examples demonstrate that common linearly stable but not strong stability preserving time discretizations may lead to violation of important boundedness properties, whereas SSP methods guarantee the desired properties provided only that these properties are satisfied with forward Euler timestepping. We review optimal explicit and implicit SSP Runge–Kutta and multistep methods, for linear and nonlinear problems. We also discuss the SSP properties of spectral deferred correction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiotti, L., Hawke, I., Montero, P.J., Loffler, F., Rezzolla, L., Stergioulas, N., Font, J.A., Seidel, E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71 (2005)

  2. Balbás, J., Tadmor, E.: A central differencing simulation of the Orszag-Tang vortex system. IEEE Trans. Plasma Sci. 33(2), 470–471 (2005)

    Article  Google Scholar 

  3. Bassano, E.: Numerical simulation of thermo-solutal-capillary migration of a dissolving drop in a cavity. Int. J. Numer. Methods Fluids 41, 765–788 (2003)

    Article  MATH  Google Scholar 

  4. Butcher, J.C.: On the implementation of implicit Runge-Kutta methods. BIT 6, 237–240 (1976)

    Article  MathSciNet  Google Scholar 

  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2003)

    MATH  Google Scholar 

  6. Caiden, R., Fedkiw, R.P., Anderson, C.: A numerical method for two-phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys. 166, 1–27 (2001)

    Article  MATH  Google Scholar 

  7. Carrillo, J., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, M.-H., Cockburn, B., Reitich, F.: High-order RKDG methods for computational electromagnetics. J. Sci. Comput. 22–23, 205–226 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cheng, L.-T., Liu, H., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrodinger equations. Commun. Math. Sci. 1(3), 593–621 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Cheruvu, V., Nair, R.D., Tufo, H.M.: A spectral finite volume transport scheme on the cubed-sphere. Appl. Numer. Math. 57, 1021–1032 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Qian, J., Reitich, F., Wang, J.: An accurate spectral/discontinuous finite-element formulation of a phase-space-based level set approach to geometrical optics. J. Comput. Phys. 208, 175–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dahlquist, G., Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge–Kutta methods. Technical Report, Department of Numerical Analysis and Computational Science, Royal Institute of Technology, Stockholm (1979)

  15. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equations. CWI Monographs, vol. 2. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  16. Del Zanna, L., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows: I. hydrodynamics. Astron. Astrophys. 390, 1177–1186 (2002)

    Article  MATH  Google Scholar 

  17. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40, 241–266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feng, L.-L., Shu, C.-W., Zhang, M.: A hybrid cosmological hydrodynamic/n-body code based on a weighted essentially nonoscillatory scheme. Astrophys. J. 612, 1–13 (2004)

    Article  Google Scholar 

  20. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods. SIAM J. Numer. Anal. 42, 1073–1093 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ferracina, L., Spijker, M.N.: Computing optimal monotonicity-preserving Runge-Kutta methods. Technical Report MI2005-07, Mathematical Institute, Leiden University (2005)

  22. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math. Comput. 249, 201–219 (2005)

    MathSciNet  Google Scholar 

  23. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl. Numer. Math. (2008). doi:10.1016/j.apnum.2007.10.004

  24. Gottlieb, D., Tadmor, E.: The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56, 565–588 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25, 105–127 (2005)

    MathSciNet  Google Scholar 

  26. Gottlieb, S., Gottlieb, L.J.: Strong stability preserving properties of Runge-Kutta time discretization methods for linear constant coefficient operators. J. Sci. Comput. 18, 83–109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations. J. Sci. Comput. 27, 289–303 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1991)

    MATH  Google Scholar 

  31. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Higueras, I.: Representations of Runge-Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43, 924–948 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Higueras, I.: Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal. 44, 1735–1758 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Horvath, Z.: On the positivity of matrix-vector products. Linear Algebra Appl. 393, 253–258 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Horvath, Z.: On the positivity step size threshold of Runge-Kutta methods. Appl. Numer. Math. 53, 341–356 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Huang, C.: Strong stability preserving hybrid methods. Appl. Numer. Math. (2008). doi: 10.1016/j.apnum.2008.03.030

    Google Scholar 

  38. Hundsdorfer, W., Ruuth, S.J.: On monotonicity and boundedness properties of linear multistep methods. Math. Comput. 75(254), 655–672 (2005)

    Article  MathSciNet  Google Scholar 

  39. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 201–2042 (2007)

    Article  MathSciNet  Google Scholar 

  40. Hundsdorfer, W., Ruuth, S.J., Spiteri, R.J.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  42. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  43. Jin, S., Liu, H., Osher, S., Tsai, Y.-H.R.: Computing multivalued physical observables for the semiclassical limit of the Schrodinger equation. J. Comput. Phys. 205, 222–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations. Appl. Numer. Math. 35, 177–219 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ketcheson, D.I.: Highly efficient strong stability preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. (2008, to appear)

  46. Ketcheson, D.I.: Computation of optimal contractive general linear methods and strong stability preserving linear multistep methods. Math. Comput. (to appear)

  47. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge-Kutta methods. Appl. Numer. Math. (2008). doi: 10.1016/j.apnum.2008.03.034

    Google Scholar 

  48. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Numerically optimal SSP Runge–Kutta methods (website). http://www.cfm.brown.edu/people/sg/ssp.html (2007)

  49. Ketcheson, D.I., Robinson, A.C.: On the practical importance of the SSP property for Runge-Kutta time integrators for some common Godunov-type schemes. Int. J. Numer. Methods Fluids 48, 271–303 (2005)

    Article  MATH  Google Scholar 

  50. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48, 303–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31, 482–528 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  52. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations. J. Comput. Phys. 222, 832–848 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kurganov, A., Tadmor, E.: New high-resolution schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Labrunie, S., Carrillo, J., Bertrand, P.: Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas. J. Comput. Phys. 200, 267–298 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  55. Lax, P.D.: Gibbs Phenomena. J. Sci. Comput. 28, 445–449 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Lenferink, H.W.J.: Contractivity-preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  57. Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comput. 56, 177–199 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  58. Levy, D., Tadmor, E.: From semi-discrete to fully discrete: stability of Runge-Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  59. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  60. Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26, 633–656 (2008)

    MathSciNet  Google Scholar 

  61. Macdonald, C.B.: Constructing high-order Runge-Kutta methods with embedded strong-stability-preserving pairs. Master’s Thesis, Simon Fraser University (2003)

  62. Macdonald, C.B., Gottlieb, S., Ruuth, S.: A numerical study of diagonally split Runge-Kutta methods for PDEs with discontinuities (2008, submitted)

  63. Majda, A., Osher, S.: A systematic approach for correcting nonlinear instabilities. the Lax-Wendroff scheme for scalar conservation laws. Numer. Math. 30, 429–452 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  64. Mignone, A.: The dynamics of radiative shock waves: linear and nonlinear evolution. Astrophys. J. 626, 373–388 (2005)

    Article  Google Scholar 

  65. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. SIAM J. Numer. Anal. 41, 605–623 (2003)

    Article  MathSciNet  Google Scholar 

  66. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  67. Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  68. Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50, 19–51 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  69. Pantano, C., Deiterding, R., Hill, D.J., Pullin, D.I.: A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221, 63–87 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Patel, S., Drikakis, D.: Effects of preconditioning on the accuracy and efficiency of incompressible flows. Int. J. Numer. Methods Fluids 47, 963–970 (2005)

    Article  MATH  Google Scholar 

  71. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  72. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge-Kutta methods. Math. Comput. 75, 183–207 (2006)

    MATH  MathSciNet  Google Scholar 

  73. Ruuth, S.J., Hundsdorfer, W.: High-order linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 209, 226–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  74. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge-Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974–996 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  76. Sahinidis, N.V., Tawarmalani, M.: BARON 7.2: Global optimization of mixed-integer nonlinear programs, user’s manual. Available at http://www.gams.com/dd/docs/solvers/baron.pdf (2004)

  77. Shu, C.-W.: Total-variation diminishing time discretizations. SIAM J. Sci. Statist. Comput. 9, 1073–1084 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  78. Shu, C.-W.: A survey of strong stability-preserving high-order time discretization methods. In: Collected Lectures on the Preservation of Stability under Discretization. SIAM, Philadelphia (2002)

    Google Scholar 

  79. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  80. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42, 271–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  81. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  82. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  83. Spiteri, R.J., Ruuth, S.J.: Nonlinear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  84. Strang, G.: Accurate partial difference methods II: nonlinear problems. Numer. Math. 6, 37–46 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  85. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Cole Mathematics Series. Wadsworth and Brooks, California (1989)

    Google Scholar 

  86. Sun, Y., Wang, Z.J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow. J. Comput. Phys. 215, 41–58 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  87. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  88. Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lectures Notes from CIME Course Cetraro, Italy, 1997. Lecture Notes in Mathematics, vol. 1697, pp. 1–150. Springer, Berlin (1998)

    Chapter  Google Scholar 

  89. Tanguay, M., Colonius, T.: Progress in modeling and simulation of shock wave lithotripsy (swl). In: Fifth International Symposium on Cavitation (CAV2003), number OS-2-1-010 (2003)

  90. van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math. 49, 413–424 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  91. Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45(5), 1871–1901 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  92. Wang, Z.J., Liu, Y.: The spectral difference method for the 2D Euler equations on unstructured grids. In: 17th AIAA Computational Fluid Dynamics Conference. AIAA, Washington (2005)

    Google Scholar 

  93. Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: Extension to the Euler equations. J. Sci. Comput. 32(1), 45–71 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  94. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  95. Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Continuous Dyn. Syst. Ser B 8, 677–693 (2007)

    MATH  MathSciNet  Google Scholar 

  96. Zhang, W., MacFayden, A.I.: RAM: A relativistic adaptive mesh refinement hydrodynamics code. Astrophys. J. Suppl. Ser. 164, 255–279 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Additional information

The work of S. Gottlieb was supported by AFOSR grant number FA9550-06-1-0255.

The work of D.I. Ketcheson was supported by a US Dept. of Energy Computational Science Graduate Fellowship under grant DE-FG02-97ER25308.

The research of C.-W. Shu is supported in part by NSF grants DMS-0510345 and DMS-0809086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, S., Ketcheson, D.I. & Shu, CW. High Order Strong Stability Preserving Time Discretizations. J Sci Comput 38, 251–289 (2009). https://doi.org/10.1007/s10915-008-9239-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9239-z

Keywords

Navigation