Skip to main content
Log in

Discrete Rotational Symmetry, Moment Isotropy, and Higher Order Lattice Boltzmann Models

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Conventional lattice Boltzmann models only satisfy moment isotropy up to fourth order. In order to accurately describe important physical effects beyond the isothermal Navier-Stokes fluid regime, higher-order isotropy is required. In this paper, we present some basic results on moment isotropy and its relationship to the rotational symmetry of a generating discrete vector set. The analysis provides a geometric understanding for popular lattice Boltzmann models, while offering a systematic procedure to construct higher-order models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R., Yun, K.-Y., Balakrishnan, R.: Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13, 3061–3085 (2001)

    Article  Google Scholar 

  2. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: Theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  3. Bhatnagar, P.L., Gross, E., Krook, M.: A model for collision process in gases I. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  4. Bishop, R., Goldberg, S.: Tensor Analysis on Manifolds. Dover, New York (1968)

    MATH  Google Scholar 

  5. Cercignani, C.: Theory and Application of the Boltzmann Equation. Elsevier, New York (1975)

    MATH  Google Scholar 

  6. Chapman, S., Cowling, T.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  7. Chen, H.: H-theorem and generalized semi-detailed balance conditions for lattice gas systems. J. Stat. Phys. 81, 347–359 (1995)

    Article  MATH  Google Scholar 

  8. Chen, H.: Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys. Rev. E 58(3), 3955–3963 (1998)

    Article  Google Scholar 

  9. Chen, H., Teixeira, C.: H-theorem and origins of instability in thermal lattice Boltzmann models. Comput. Phys. Commun. 129, 21–31 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, H., Chen, S., Matthaeus, W.H.: Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, R5339–42 (1992)

    Article  Google Scholar 

  11. Chen, H., Orszag, S., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301–314 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, H., Teixeira, C., Molvig, K.: Digital physics approach to computational fluid dynamics: Some basic theoretical features. Int. J. Mod. Phys. C 8, 675–684 (1997)

    Article  Google Scholar 

  13. Chen, S., Doolen, G.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y., Ohashi, H., Akiyama, M.: Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviation in macrodynamic equations. Phys. Rev. E 50, 2776–2783 (1994)

    Article  Google Scholar 

  15. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    Google Scholar 

  16. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)

    Article  Google Scholar 

  17. Gad-el-Hak, M.: The fluid mechanics of microdevices—The Freeman scholar lecture. J. Fluid Eng. 121, 5–33 (1999)

    Google Scholar 

  18. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  19. Qian, Y., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  20. Schwarzenberger, R.L.E.: N-Dimensional Crystallography. Pitman, London (1980)

    MATH  Google Scholar 

  21. Shan, X., He, X.: Discretization of the velocity space in solution of the Boltzmann equation. Phys. Rev. Lett. 80, 65 (1998)

    Article  Google Scholar 

  22. Shan, X., Yuan, X., Chen, H.: Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Succi, S., Karlin, I., Chen, H.: Role of the H theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203–1220 (2002)

    Article  Google Scholar 

  24. Teixeira, C.: Continuum limit of lattice gas fluid dynamics. Ph.D. Thesis, M.I.T. (1992)

  25. Teixeira, C., Chen, H., Freed, D.: Multispeed thermal lattice Boltzmann method stabilization via equilibrium under-relaxation. Comput. Phys. Commun. 129, 207–226 (2000)

    Article  MATH  Google Scholar 

  26. Vainshtein, B.K.: Modern Crystallography. Springer, Berlin (1981)

    Google Scholar 

  27. Watari, M., Tsutahara, M.: Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method. Phys. Rev. E 70, 016703–9 (2004)

    Article  Google Scholar 

  28. Wolfram, S.: Cellular automaton fluid 1: Basic theory. J. Stat. Phys. 45, 471–526 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Xu, K.: A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171(48), 289–335 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu, K., Martinelli, L., Jameson, A.: Gas-kinetic finite volume methods, flux vector splitting and artificial dissipation. J. Comput. Phys. 120(48), 48–65 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang, R., Chen, H., Qian, Y., Chen, S.: Effective volumetric lattice Boltzmann scheme. Phys. Rev. E 63, 056705(1)–056705(6) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Orszag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Goldhirsch, I. & Orszag, S.A. Discrete Rotational Symmetry, Moment Isotropy, and Higher Order Lattice Boltzmann Models. J Sci Comput 34, 87–112 (2008). https://doi.org/10.1007/s10915-007-9159-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9159-3

Keywords

Navigation