Skip to main content
Log in

Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Direct numerical simulation of the flow in a lid-driven cubical cavity has been carried out at high Reynolds numbers (based on the maximum velocity on the lid), between 1.2 104 and 2.2 104. An efficient Chebyshev spectral method has been implemented for the solution of the incompressible Navier–Stokes equations in a cubical domain. The Projection-Diffusion method [Leriche and Labrosse (2000, SIAM J. Sci. Comput. 22(4), 1386–1410), Leriche et al. (2005, J. Sci. Comput., in press)] allows to decouple the velocity and pressure computation in very efficient way and the simple geometry allows to use the fast diagonalisation method for inverting the elliptic operators at a low computational cost. The resolution used up to 5.0 million Chebyshev collocation nodes, which enable the detailed representation of all dynamically significant scales of motion. The mean and root-mean-square velocity statistics are briefly presented

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azaiez M., Bernardi C., and Grundmann M. (1995). Spectral method applied to porous media equations. East-West J. Numer. Math. 2:91–105

    MathSciNet  Google Scholar 

  2. Batoul A., Khallouf H., and Labrosse G. (1994). Une méthode de résolution directe (Pseudo-Spectrale) du problème de Stokes 2D/3D instationnaire. Application à la Cavité Entrainée Carrée. C.R. Acad. Sci. Paris. 319(I):1455–1461

    CAS  Google Scholar 

  3. Bouffanais, R., Deville, M. O., Fischer, P. F., Leriche, E., and Weill, D. (2005). Direct and large eddy simulation of incompressible viscous fluid flow by the spectral element method. J. Sci. Comput. DOI: 10.1007/s10915-005-9039-7.

  4. Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. (1988). Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics, Springer-Verlag, New-York

    Google Scholar 

  5. Deville M.O., Fischer P.F., and Mund E.H. (2002). High-Order Method for Incompressible Fluid Flow. Cambridge University Press, Cambridge

    Google Scholar 

  6. Gottlieb D., and Orszag S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia

    Google Scholar 

  7. Haldenwang P., Labrosse G., Abboudi S.A., and Deville M. (1984). Chebyshev 3D spectral and 2D pseudospectral solvers for the helmholtz equation. J. Comput. Phys. 55:115–128

    Article  MathSciNet  Google Scholar 

  8. Karniadakis G.E.M., Israeli M., and Orszag S.A. (1991). High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97:414–443

    Article  ADS  MathSciNet  Google Scholar 

  9. Karniadakis G.Em., and Sherwin S.J. (1999). Spectral/hp element methods for CFD. Oxford University Press, New-York

    Google Scholar 

  10. Labrosse G. (1993). Compatibility conditions for the Stokes system discretized in 2D cartesian domains. Comput. Meth. Appl. Mech. Eng. 106:353–365

    Article  MATH  MathSciNet  Google Scholar 

  11. Leriche, E. (1999). Direct Numerical Simulation of a Lid-Driven Cavity Flow by a Chebyshev Spectral Method. Ph.D thesis, no:1932, Ecole Polytechnique Fédérale de Lausanne, Lausanne

    Google Scholar 

  12. Leriche E., and Gavrilakis S. (2000). Direct numerical simulation of the flow in a lid-driven cubical cavity. Phys. Fluids 12(6):1363–1376

    Article  ADS  CAS  Google Scholar 

  13. Leriche E., and Labrosse G. (2000). High-order direct Stokes solvers with or without temporal splitting: Numerical investigations of their comparative properties. SIAM J. Sci. Comput. 22(4):1386–1410

    Article  MathSciNet  Google Scholar 

  14. Leriche, E., Perchat, E., Labrosse, G., and Deville, M. O. (2005). Numerical evaluation of the accuracy and stability properties of high-order direct Stokes solvers with or without temporal splitting. To appear in J. Sci. Comput.

  15. Lynch R.E., Rice J.R., and Thomas D.H. (1964). Direct solution of partial difference equations by tensor product methods. Numerishe Mathematik 6:185–199

    Article  MathSciNet  Google Scholar 

  16. Prasad A.K., and Koseff J.R. (1989). Reynolds number and end-wall effects on a lid-driven cavity flow. Phys. Fluids 1(2):208–218

    Article  ADS  Google Scholar 

  17. Schumack M., Schultz W., and Boyd J. (1991). Spectral method solution of the Stokes equations on nonstaggered grids. J. Comput. Phys. 94:30–58

    Article  ADS  CAS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Leriche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leriche, E. Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds Number by a Chebyshev Spectral Method. J Sci Comput 27, 335–345 (2006). https://doi.org/10.1007/s10915-005-9032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9032-1

Keywords

Navigation