Skip to main content
Log in

Temporal large-eddy simulations of the lid-driven cavity by finite volume method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper describes in detail a numerical scheme to predict complex turbulent flows using a recent model based on temporal large-eddy simulations (TLES). To solve the equations a second-order finite volume numerical method coupled with a second-order time integration scheme is used. The numerical scheme is validated and then applied to present new results concerning the prediction of the complex turbulent flow in a cubic lid-driven cavity, at Reynolds numbers \(Re=12{,}000\) and \(Re=18{,}000\). The results obtained with the TLES are compared with direct numerical simulations and experimental data for the mean velocity flow field and for the Reynolds stresses, showing to be very attractive when compared to large-eddy simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Watson E (1964) The radial spread of a liquid jet over a horizontal plane. J Fluid Mech 20:481–499

    MathSciNet  MATH  Google Scholar 

  2. Tang Z, Wan D (2015) Numerical simulation of impinging jet flows by modified MPS method. Eng Comput 32:1153–1171

    Google Scholar 

  3. Bhajantri M, Eldho T, Deolalikar P (2007) Numerical modelling of turbulent flow through spillway with gated operation. Int J Numer Methods Eng 72:221–243

    MATH  Google Scholar 

  4. Fureby C (2009) Large eddy simulation modelling of combustion for propulsion applications. Phil Trans Roy Soc Lond A—Math Phys Eng Sci 367:2957–2969

    MATH  Google Scholar 

  5. Menzies K (2009) Large eddy simulation applications in gas turbines. Phil Trans Roy Soc Lond A—Math Phys Eng Sci 367:2827–2838

    Google Scholar 

  6. Eastwood S, Tucker P, Xia H, Klostermeier C (2009) Developing large eddy simulation for turbomachinery applications. Phil Trans Roy Soc Lond A—Math Phys Eng Sci 367:2999–3013

    Google Scholar 

  7. Bouffanais R (2010) Advances and challenges of applied large-eddy simulation. Comput Fluids 39:735–738

    MATH  Google Scholar 

  8. Bouffanais R, Deville M, Fischer M, Leriche E, Weill D (2006) Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element method. J Sci Comput 27:151–162

    MathSciNet  MATH  Google Scholar 

  9. Pruett C, Gatski T, Grosch C, Thacker W (2003) The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys Fluids 15:2127

    MATH  Google Scholar 

  10. Berland J, Lafon P, Daude F, Crouzet F, Bogey C, Bailly C (2011) Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering. Comput Fluids 47:65–74

    MathSciNet  MATH  Google Scholar 

  11. Arai J, Koshizuka S, Murozono K (2013) Large eddy simulation and a simple wall model for turbulent flow calculation by a particle method. Int J Numer Methods Fluids 71:772–787

    MathSciNet  Google Scholar 

  12. Tsang C, Trujillo M, Rutland C (2014) Large-eddy simulation of shear flows and high-speed vaporizing liquid fuel sprays. Comput Fluids 105:262–279

    MathSciNet  MATH  Google Scholar 

  13. Sagaut P (2006) Large eddy simulation for incompressible flows—an introduction. Springer, Berlin

    MATH  Google Scholar 

  14. Frisch U (1995) Turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Pruett C (2008) Temporal large-eddy simulation: theory and implementation. Theor Comput Fluid Dyn 22:275–304

    MATH  Google Scholar 

  16. Dakhoul Y, Bedford K (1986) Improved averaging method for turbulent flow simulation. Part I: theoretical development and application to Burgers’ transport equation. Int J Numer Methods Fluids 6:49

    MATH  Google Scholar 

  17. Aldama A (1990) Filtering techniques for turbulent flow simulation. Lectures notes in engineering. Springer, Berlin

    MATH  Google Scholar 

  18. Meneveau C, Lund T, Cabot W (1996) Lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 319:353–385

    MATH  Google Scholar 

  19. Pruett CD (2000) Eulerian time-domain filtering for spatial large-eddy simulation. AIAA 38(9):1634–1642

    Google Scholar 

  20. Stolz S, Adams N (1999) An approximate deconvolution procedure for large-eddy simulation. Phys of Fluids 11(7):1699–1701

    MATH  Google Scholar 

  21. Tejada-Martínez A, Grosch C, Gatski T (2007) Temporal large-eddy simulation of unstratified and stably stratified turbulent channel flows. Int J Heat Fluid Flow 28:1244–1261

    Google Scholar 

  22. Leriche E, Gavrilakis S (2000) Direct numerical simulation of the flow in a lid-driven cubical cavity. Phys Fluids 12:1363

    MATH  Google Scholar 

  23. Bruneau C, Saad M (2006) The 2D lid-driven cavity problem revisited. Comput Fluids 35:326–348

    MATH  Google Scholar 

  24. Thais L, Tejada-Martínez A, Gatski T, Mompean G (2010) Temporal large eddy simulations of turbulent viscoelastic drag reduction flows. Phys Fluids 22(013):103

    MATH  Google Scholar 

  25. Pruett C, Thomas B, Grosch C, Gatski T (2006) A temporal approximate deconvolution model for large-eddy simulation. Phys Fluids 18(028):104

    Google Scholar 

  26. Bell JB, Colella P, Glaz HM (1989) A 2nd-order projection method for the incompressible Navier–Stokes equations. J Comp Phys 85(2):257–283

    MATH  Google Scholar 

  27. Liu M, Ren YX, Zhang H (2004) A class of fully second order accurate projection methods for solving the incompressible Navier–Stokes equations. J Comp Phys 200(1):325–346

    MathSciNet  MATH  Google Scholar 

  28. Guermond JL, Minev P, Shen J (2006) An overview of projection methods for incompressible flows. Comput Method Appl M 195(44–47):6011–6045

    MathSciNet  MATH  Google Scholar 

  29. Sousa FS, Oishi CM, Buscaglia GC (2015) Spurious transients of projection methods in microflow simulations. Comput Method Appl M 285:659–693

    MathSciNet  MATH  Google Scholar 

  30. Perot JB (1993) An analysis of the fractional step method. J Comput Phys 108(1):51–58

    MathSciNet  MATH  Google Scholar 

  31. Strikwerda JC, Lee YS (1999) The accuracy of the fractional step method. SIAM J Numer Anal 37(1):37–47

    MathSciNet  MATH  Google Scholar 

  32. Codina R (2001) Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys 170(1):112–140

    MathSciNet  MATH  Google Scholar 

  33. Armfield S, Street R (2002) An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids. Int J Numer Methods Fluids 38(3):255–282

    MATH  Google Scholar 

  34. Gervasio P, Saleri F (2006) Algebraic fractional-step schemes for time-dependent incompressible Navier–Stokes equations. J Sci Comput 27(1–3):257–269

    MathSciNet  MATH  Google Scholar 

  35. Chorin A (1968) Numerical solution of the Navier–Stokes equations. Math Comp 22:745–762

    MathSciNet  MATH  Google Scholar 

  36. Leonard B (1979) A stable and accurate convective modelling procedure base and quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    MATH  Google Scholar 

  37. Harris J, Grilli S (2011) A perturbation approach to large eddy simulation of wave-induced bottom boundary layer flows. Int J Numer Methods Fluids 68:1574–1604

    MathSciNet  MATH  Google Scholar 

  38. Hirt CW, Nichols BD, Romero NC (1975) SOLA numerical solution algorithm for transient fluid flow. Los Alamos Laboratory, Report LA-5852

  39. Peric M, Kessler R, Scheuerer G (1988) Comparison of finite-volume numerical-methods with staggered and colocated grids. Comput Fluids 16(4):389–403

    MATH  Google Scholar 

  40. Piller M, Stalio E (2004) Finite-volume compact schemes on staggered grids. J Comput Phys 197(1):299–340

    MATH  Google Scholar 

  41. Fletcher R (1976) Conjugate gradient methods for indefinite systems. In: Watson GA (ed) Numerical analysis. Lecture notes in mathematics, vol 506. Springer, Berlin

    Google Scholar 

  42. Kremer F, Bogey C (2015) Large-eddy simulation of turbulent channel flow using relaxation filtering: resolution requirement and Reynolds number effects. Comput Fluids 116:17–28

    MATH  Google Scholar 

  43. Deardorff J (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    MATH  Google Scholar 

  44. Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    MATH  Google Scholar 

  45. Moser R, Kim J, Mansour N (1999) Direct numerical simulation of turbulent channel flow up to \({R}e_{\tau }\)=590. Phys Fluids 11(4):943–945

    MATH  Google Scholar 

  46. Thais L, Tejada-Martínez A, Gatski T, Mompean G (2011) A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput Fluids 43:134–142

    MathSciNet  MATH  Google Scholar 

  47. Tabor G, Baba-Ahmadi M (2010) Inlet conditions for large eddy simulation: a review. Comput Fluids 39:553–567

    MathSciNet  MATH  Google Scholar 

  48. Corrêa L (2016) Simulação de grandes escalas de escoamentos turbulentos com filtragem temporal via método de volumes finitos. Ph.D. thesis, University of São Paulo

  49. Koseff J, Street R (1984) The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. J Fluids Eng 106:390–398

    Google Scholar 

  50. Jordan S, Ragab S (1994) On the unsteady and turbulent characteristics of the three-dimensional shear-driven cavity flow. J Fluids Eng 116:439–449

    Google Scholar 

  51. Shankar P, Desphande M (2000) Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 32:93–136

    MathSciNet  Google Scholar 

  52. Kawaguti M (1961) Numerical solution of the Navier–Stokes equations for the flow in a two dimensional cavity. J Phys Soc Japan 16:2307–2327

    MathSciNet  MATH  Google Scholar 

  53. Burggraf O (1966) Analytical and numerical studies of the structure of steady separated flows. J Fluid Mech 24:113–151

    Google Scholar 

  54. Ghia U, Ghia K, Shin C (1982) High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48:387–411

    MATH  Google Scholar 

  55. Shetty D, Fisher T, Chunekar A, Frankel S (2010) High-order incompressible large-eddy simulation of fully inhomogeneous turbulent flows. J Comp Phys 229:8802–8822

    MathSciNet  MATH  Google Scholar 

  56. Vreman A (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids 16:3670–3681

    MATH  Google Scholar 

  57. Paraview (2013) Paraview / Line Integral Convolution. URL http://www.paraview.org/Wiki/ParaView/Line_Integral_Convolution. Accessed 03 Dec 2015

Download references

Acknowledgements

We gratefully acknowledge the support provided by FAPESP (Grants 2010/16865-2, 2012/17827-2 and 2015/02649-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Corrêa.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, L., Mompean, G., Kurokawa, F.A. et al. Temporal large-eddy simulations of the lid-driven cavity by finite volume method. J Braz. Soc. Mech. Sci. Eng. 40, 417 (2018). https://doi.org/10.1007/s40430-018-1333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1333-z

Keywords

Navigation