Skip to main content

Advertisement

Log in

Osteology and Functional Morphology of the Axial Postcranium of the Marine Sloth Thalassocnus (Mammalia, Tardigrada) with Paleobiological Implications

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The gross morphology of the axial postcranium of Thalassocnus is presented here, completing the description of the skeleton of the genus. Thalassocnus is characterized by a low spinous process on C7, a cranially shifted position of the diaphragmatic vertebra, a great number of caudal vertebrae, the morphology of their transverse processes, and the conservation of the craniocaudal length of their centra up to Ca19. Additionally, the late species of Thalassocnus feature cranial articular surfaces of the atlas that are oriented cranioventrally and thoracolumbar vertebrae with spinous processes that are more inclined caudally, shorter craniocaudally, and have a smaller apex than in earlier species. In the late species, the thoracolumbar vertebrae are also characterized by zygapophyseal articulations that are more conspicuously concavo-convex, and by ribs that are affected by osteosclerosis and pachyostosis. Thalassocnus yaucensis additionally differs from the earlier species of the genus in featuring thoracolumbar vertebral centra that are shortened craniocaudally. The morphology of the axial postcranium of Thalassocnus is consistent with a reduced amount of time spent in a terrestrial habitat. Furthermore, the overall body size and extensive and extreme osteosclerosis of Thalassocnus suggest that bottom-walking was part of its modes of swimming. The tail was probably involved in diving and equilibration but did not contribute to propulsion. A downturned position of the head is inferred for the late species of Thalassocnus, and is probably related to grazing activity on the seafloor. The stabilized vertebral column may be related to the digging behavior purported in Thalassocnus. The aquatic functions of the entire skeleton of Thalassocnus are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

C:

Cervical

T:

Thoracic

L:

Lumbar

S:

Synsacrum

Ca:

Caudal (not included in the synsacrum, see below)

LACM:

Natural History Museum of Los Angeles County, Los Angeles, California, USA

MCL:

Museu de Ciencias Naturais da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil

MNHN:

Muséum national d’Histoire naturelle, Paris, France

MUSM:

Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru

UW:

Burke Museum, University of Washington, Seattle, Washington, USA

References

  • Amson E, Argot C, McDonald HG, Muizon C de (2014a) Osteology and functional morphology of the forelimb of the marine sloth Thalassocnus (Mammalia, Tardigrada) J Mammal Evol. Published online 07/08/2014. doi: 10.1007/s10914-014-9268-3

  • Amson E, Muizon C de (2014) A new durophagous phocid (Mammalia: Carnivora) from the late Neogene of Peru and considerations on monachine seals phylogeny. J Syst Palaeontol 12:523–548. doi: 10.1080/14772019.2013.799610

  • Amson E, Argot C, McDonald HG, Muizon C de (2014b) Osteology and functional morphology of the hind limb of the marine sloth Thalassocnus (Mammalia, Tardigrada) J Mammal Evol. doi: 10.1007/s10914-014-9274-5

  • Amson E, Muizon C de, Domning DP, Argot C, Buffrénil V de (in press) Bone histology as a clue for resolving the puzzle of a dugong rib in the Pisco Formation, Peru. J Vertebr Paleontol.

  • Amson E,Muizon C de, LaurinM, Argot C, Buffrénil V de (2014c) Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc R Soc B 281:20140192. doi: 10.1098/rspb.2014.0192

  • Bargo MS, Toledo N, Vizcaíno SF (2006) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263. doi: 10.1002/jmor

    Article  PubMed  Google Scholar 

  • Barnes LG (2013) A new genus and species of late Miocene paleoparadoxiid (Mammalia, Desmostylia) from California. Contrib Sci 521:51–114

    Google Scholar 

  • Barone R (1968) Anatomie comparée des Mammifères domestiques, Tome 2, Arthrologie et Myologie. Imprimerie des Beaux-Arts, Lyon

    Google Scholar 

  • Beatty BL (2009) New material of Cornwallius sookensis (Mammalia: Desmostylia) from the Yaquina Formation of Oregon. J Vertebr Paleontol 29:894–909

    Article  Google Scholar 

  • Bebej RM, Ul-Haq M, Zalmout IS, Gingerich PD (2012) Morphology and function of the vertebral column in Remingtonocetus domandaensis (Mammalia, Cetacea) from the middle Eocene Domanda Formation of Pakistan. J Mammal Evol 19:77–104. doi: 10.1007/s10914-011-9184-8

    Article  Google Scholar 

  • Bender R, Bender N (2013) Swimming and diving behavior in apes (Pan troglodytes and Pongo pygmaeus): first documented report. Am J Phys Anthropol 152:156–62. doi: 10.1002/ajpa.22338

    Article  PubMed  Google Scholar 

  • Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168

    Article  CAS  PubMed  Google Scholar 

  • Buchholtz EA (1998) Implications of vertebral morphology for locomotor evolution in early Cetacea. In: Thewissen JGM (ed) The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, Plenum Press, New York, pp 325–352

    Chapter  Google Scholar 

  • Buchholtz EA (2001) Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J Zool 253:175–190. doi: 10.1017/S0952836901000164

    Article  Google Scholar 

  • Buchholtz EA, Stepien CC (2009) Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evol & Dev 11:69–79. doi: 10.1111/j.1525-142×.2008.00303.×

    Article  Google Scholar 

  • Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linn Soc 100:384–406. doi: 10.1111/j.1095-8312.2010.01431.x

    Article  Google Scholar 

  • Cartelle C, De Iuliis G, Ferreira RL (2009) Systematic revision of tropical Brazilian scelidotheriine sloths (Xenarthra, Mylodontoidea). J Vertebr Paleontol 29:555–566

    Article  Google Scholar 

  • Cartelle C, Fonseca JS (1983) Contribuição ao melhor conhecimento da pequena preguiça terrícola Nothrotherium maquinense (Lund) Lydekker, 1889. Lundiana 2:127–181

  • Coughlin BL, Fish FE (2009) Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. J Mammal 90:675–679

    Article  Google Scholar 

  • De Iuliis G, Gaudin TJ, Vicars MJ (2011) A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54:171–205. doi: 10.1111/j.1475-4983.2010.01001.x

    Article  Google Scholar 

  • Domning DP (1977) An ecological model for late Tertiary sirenian evolution in the North Pacific Ocean. Syst Biol 25:352–362

    Google Scholar 

  • Domning DP (2001a) The earliest known fully quadrupedal sirenian. Nature 413:625–627. doi: 10.1038/35098072

    Article  CAS  PubMed  Google Scholar 

  • Domning DP (2001b) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50. doi: 10.1016/S0031-0182(00)00200-5

    Article  Google Scholar 

  • Domning DP (2002) The terrestrial posture of desmostylians. Smithsonian Contrib Paleobiol 1959:99–111

    Google Scholar 

  • Domning DP, Beatty BL (2007) Use of tusks in feeding by dugongid sirenians: observations and tests of hypotheses. Anat Rec 290:523–38. doi: 10.1002/ar.20540

    Article  Google Scholar 

  • Domning DP, Buffrénil V de (1991) Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar Mammal Sci 7:331–368

  • Dor M (1937) La Morphologie de la Queue des Mammifères dans ses Rapports avec la Locomotion. Impressions Pierre André, Paris

    Google Scholar 

  • Dunstone N (1998) Adaptations to the semi-aquatic habit and habitat. In: Dunstone N, Gorman ML (eds) Behaviour and Ecology of Riparian Mammals. Cambridge University Press, New York, pp 1–16

    Chapter  Google Scholar 

  • Ehret DJ, Macfadden BJ, Jones DS, DeVries TJ, Foster DA, Salas-Gismondi R (2012) Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the Upper Neogene Pisco Formation of Peru. Palaeontology 55:1139–1153. doi: 10.1111/j.1475-4983.2012.01201.x

    Article  Google Scholar 

  • Evans HE, Lahunta A de (2013) Miller’s Anatomy of the Dog. 4th edn. Saunders, St. Louis

  • Fariña RA, Blanco RE (1996) Megatherium, the stabber. Proc R Soc B 263:1725–1729

    Article  PubMed  Google Scholar 

  • Fish FE (1982) Function of the compressed tail of surface swimming muskrats (Ondatra zibethicus). J Mammal 63:591–597

    Article  Google Scholar 

  • Fish FE (1994) Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J Mammal 75:989–997

    Article  Google Scholar 

  • Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biochem Zool 73:683–98. doi: 10.1086/318108

    Article  CAS  PubMed  Google Scholar 

  • Fish FE, Smelstoys J, Baudinette R V., Reynolds PS (2002) Fur does not fly, it floats: buoyancy of pelage in semi-aquatic mammals. Aquat Mamm 28:103–112

    Google Scholar 

  • Gaudin TJ (1999) The morphology of xenarthrous vertebrae (Mammalia: Xenarthra). Fieldiana Geol New Ser 41:1–38

    Google Scholar 

  • Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140:255–305. doi: 10.1111/j.1096-3642.2003.00100.x

    Article  Google Scholar 

  • Gaudin TJ, Biewener AA (1992) The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra). J Morphol 214:63–81

    Article  CAS  PubMed  Google Scholar 

  • Germain D, Laurin M (2005) Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zool Scripta 34:335–350. doi: 10.1111/j.1463-6409.2005.00198.x

    Article  Google Scholar 

  • Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswami A, Asher RJ (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–8. doi: 10.1073/pnas.1010335107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hautier L, Sarr R, Tabuce R, Lihoreau F, Adnet S, Domning DP, Samb M, Hameh PM (2012) First prorastomid sirenian from Senegal (Western Africa) and the Old World origin of sea cows. J Vertebr Paleontol 32:1218–1222

    Article  Google Scholar 

  • Hayashi S, Houssaye A, Nakajima Y, Chiba K, Ando T, Sawamura H, Inuzuka N, Kaneko N, Osaki T (2013) Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8:e59146. doi: 10.1371/journal.pone.0059146

  • Hickman GC (1979) The mammalian tail: a review of functions. Mammal Rev 9:143–157

    Article  Google Scholar 

  • Hoffstetter R (1952) Les mammifères Pléistocènes de la République de l’Équateur. Mém Soc Géol France 31:375–488

    Google Scholar 

  • Hoffstetter R (1961) Description d’un squelette de Planops (Gravigrade du Miocène de Patagonie). Mammalia 25:1–96

    Article  Google Scholar 

  • Horgan P, Booth D, Nichols C, Lanyon JM (2014) Insulative capacity of the integument of the dugong (Dugong dugon): thermal conductivity, conductance and resistance measured by in vitro heat flux. Mar Biol 161:1395–1407 doi: 10.1007/s00227-014-2428-4

    Article  Google Scholar 

  • Houssaye A (2009) “Pachyostosis” in aquatic amniotes: a review. Integr Zool 4:325–40. doi: 10.1111/j.1749-4877.2009.00146.x

    Article  PubMed  Google Scholar 

  • Howell AB (1930) Aquatic Mammals: Their Adaptations to Life in the Water. Charles C. Thomas, Springfield

    Google Scholar 

  • Howell AB (1937) The swimming mechanism of the platypus. J Mammal 18:217–222

    Article  Google Scholar 

  • Hugi J, Sánchez-Villagra MR (2012) Life history and skeletal adaptations in the Galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological data—a comparative study of iguanines. J Herpetol 46:312–324. doi: 10.1670/11-071

    Article  Google Scholar 

  • Husar SL (1978) Dugong dugon. Mammal Species 88:1–7

    Google Scholar 

  • Inuzuka N (2000) Aquatic adaptations in desmostylians. Hist Biol 14:97–113

    Article  Google Scholar 

  • Inuzuka N (2005) The Stanford skeleton of Paleoparadoxia (Mammalia: Desmostylia). Bull Ashoro Mus Paleontol 3:3–110

    Google Scholar 

  • Iverson SJ (2008) Blubber. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals Academic Press, Amsterdam, pp 115–120

    Google Scholar 

  • Jenkins FA Jr (1970) Anatomy and function of expanded ribs in certain edentates and primates. J Mammal 51:288–301

    Article  PubMed  Google Scholar 

  • Kojeszewski T, Fish FE (2007) Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. J Exp Biol 210:2411–8. doi: 10.1242/jeb.02790

    Article  PubMed  Google Scholar 

  • Kooyman GL (1973) Respiratory adaptations in marine mammals. Am Zool 13:457–468

    Article  Google Scholar 

  • Kriloff A, Germain D, Canoville A, Vincent P, Sache M, Laurin M (2008) Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. J Evol Biol 21:807–26. doi: 10.1111/j.1420-9101.2008.01512.x

    Article  CAS  PubMed  Google Scholar 

  • Kuo J (2005) A revision of the genus Heterozostera (Zosteraceae). Aquatic Botany 81:97–140. doi: 10.1016/j.aquabot.2004.10.005

    Article  Google Scholar 

  • Leidy J (1855) A memoir on the extinct sloth tribe of North America. Smithsonian Contrib Knowl 7:1–68

    Google Scholar 

  • Lewis ME (2008) The femur of extinct bunodont otters in Africa (Carnivora, Mustelidae, Lutrinae). Comptes Rendus Palevol 7:607–627. doi: 10.1016/j.crpv.2008.09.010

    Article  Google Scholar 

  • Liwanag HEM, Berta A, Costa DP, Abney M, Williams TM (2012) Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biol J Linn Soc 106:926–939. doi: 10.1111/j.1095-8312.2012.01900.x

    Article  Google Scholar 

  • Lull RS (1929) A remarkable ground sloth. Mem Peabody Mus Yale Univ 3:1–39. doi: 10.1002/asna.19292372003

    Google Scholar 

  • Marsh H (2008) Dugong (Dugong dugon). In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, Amsterdam, pp 332–335

  • Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular-vibrissal complex. J Zool 259:245–260. doi: 10.1017/S0952836902003205

    Article  Google Scholar 

  • McDonald HG (1977) Description of the osteology of the extinct gravigrade edentate Megalonyx with observations on its ontogeny, phylogeny, and functional anatomy. Dissertation, University of Florida, Gainesville

    Google Scholar 

  • McDonald HG (2003) Xenarthran skeletal anatomy: primitive or derived? Senckenb Biol 83:5–17

    Google Scholar 

  • McDonald HG, Muizon C de (2002) The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). J Vertebr Paleontol 22:349–365

  • McNab BK (1985) Energetics, population biology, and distribution of xenarthrans, living and extinct. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington, D.C., pp 219–232

    Google Scholar 

  • Muizon C de, Domning DP (1985) The first records of fossil sirenians in the southeastern Pacific Ocean. Bull Mus natl Hist nat Sec C, 4ème sér 7:189–213

  • Muizon C de, McDonald HG (1995) An aquatic sloth from the Pliocene of Peru. Nature 375:224–227. doi: 10.1038/375224a0

  • Muizon C de, McDonald HG, Salas R, Urbina M (2003) A new early species of the aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the late Miocene of Peru. J Vertebr Paleontol 23:886–894. doi: 10.1671/2361-13

  • Muizon C de, McDonald HG, Salas R, Urbina M (2004a) The evolution of feeding adaptations of the aquatic sloth Thalassocnus. J Vertebr Paleontol 24:398–410. doi: 10.1671/2429b

  • Muizon C de, McDonald HG, Salas R, Urbina M (2004b) The youngest species of the aquatic sloth Thalassocnus and a reassessment of the relationships of the nothrothere sloths (Mammalia: Xenarthra). J Vertebr Paleontol 24:287–397. doi: 10.1671/2429a

  • Navarrete D, Ortega J (2011) Tamandua mexicana (Pilosa: Myrmecophagidae). Mammal Species 43:56–63. doi: 10.1644/874.1

    Article  Google Scholar 

  • Nishiwaki M, Marsh H (1985) Dugong - Dugong dugon. In: Ridgway SH, Harrison RJ (eds) Handbook of Marine Mammals. Vol. 3. The Sirenians and Baleen Whales. Academic Press, London, pp 1–32

  • Nyakatura JA, Fischer MS (2010) Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth. J Exp Biol 213:4278–90. doi: 10.1242/jeb.047647

    Article  PubMed  Google Scholar 

  • Owen R (1842) Description of the skeleton of an extinct gigantic sloth, Mylodon robustus, Owen, with observations on the osteology, natural affinities, and probable habits of the megatherioid quadrupeds in general. R Coll Surg Engl London 1–176, 24 plates

  • Owen R (1861) Memoir on the Megatherium, or giant ground-sloth of America (Megatherium americanum, Cuvier). Phil Trans R Soc London. Williams and Norgate, London, p 84, 27 plates

  • Palmeirim JM, Hoffmann RS (1983) Galemys pyrenaicus. Mammal Species 207:1–5

    Article  Google Scholar 

  • Pasitschniak-Arts BM, Marinelli L (1998) Ornithorhynchus anatinus. Mammal Species 585:1–9

    Article  Google Scholar 

  • Pierce SE, Clack JA, Hutchinson JR (2011) Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. J Anat 219:502–14. doi: 10.1111/j.1469-7580.2011.01406.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pujos F, Salas R (2004) A new species of Megatherium (Mammalia: Xenarthra: Megatheriidae) from the Pleistocene of Sacaco and Tres Ventanas, Peru. Palaeontology 47:579–604. doi: 10.1111/j.0031-0239.2004.00376.x

    Article  Google Scholar 

  • Quemeneur S, Buffrénil V de, Laurin M (2013) Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol J Linn Soc 109:644–655. doi: 10.1111/bij.12066

  • Reynolds JE III, Powell JA, Taylor CR (2008) Manatees Trichechus manatus, T. senegalensis, and T. inunguis. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, Amsterdam, pp 682–691

  • Ribak G, Weihs D, Arad Z (2004) How do cormorants counter buoyancy during submerged swimming? J Exp Biol 207:2101–2114. doi: 10.1242/jeb.00997

    Article  PubMed  Google Scholar 

  • Salas R, Pujos F, Muizon C de (2005) Ossified meniscus and cyamo-fabella in some fossil sloths: a morpho-functional interpretation. Geobios 38:389–394. doi: 10.1016/j.geobios.2003.11.009

  • Sánchez-Villagra MR, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst Biodivers 5:1–7. doi: 10.1017/S1477200006002258

    Article  Google Scholar 

  • Scott WB (1903–1904) Mammalia of the Santa Cruz beds. Reports of the Princeton University Expedition to Patagonia 5:1–490. doi: 10.1525/mua.2006.29.2.153

  • Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh der K Ned Akad van Wet Natuurkd 42:1–128

    Google Scholar 

  • Stock C (1925) Cenozoic gravigrade edentates of western North America, with special reference to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Carnegie Inst Washington Publ 331:1–206

    Google Scholar 

  • Tarasoff FJ, Bisaillon A, Piérard J, Whitt AP (1972) Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can J Zool 50:915–29

    Article  CAS  PubMed  Google Scholar 

  • Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31.doi: 10.1080/10292380009380550

  • Taylor WP (1914) The problem of aquatic adaptation in the Carnivora, as illustrated in the osteology and evolution of the sea-otter. Univ Calif Publ Geol Sci 7:465–495

    Google Scholar 

  • Thewissen JGM, Fish FE (1997) Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482–490

    Google Scholar 

  • Thewissen JGM, Taylor MA (2007) Aquatic adaptations in the limbs of amniotes. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 310–322

    Google Scholar 

  • Tito G (2008) New remains of Eremotherium laurillardi (Lund, 1842) (Megatheriidae, Xenarthra) from the coastal region of Ecuador. J South Am Earth Sci 26:424–434. doi: 10.1016/j.jsames.2008.05.001

    Article  Google Scholar 

  • Wall W, Heinbaugh K (1999) Locomotor adaptations in Metamynodon planifrons compared to other Amynodontids (Perissodactyla, Rhinocerotoidea). Natl Park Paleontol Res 4:8–17

    Google Scholar 

  • Willey JS, Blob RW (2004) Tail kinematics of juvenile common snapping turtles during aquatic walking. J Herpetol 38:360–369. doi: 10.1670/48-04A

    Article  Google Scholar 

  • Wilsson L (1971) Observations and experiments on the ethology of the European beaver (Castor fiber L.). A study in the development of phylogenetically adapted behaviour in a highly specialized mammal. Viltrevy 8:113–266

    Google Scholar 

  • Winge H (1915) E Jordfundne og nulevende Gumlere (Edentata) fra Lagoa Santa, Minas Geraes, Brasilien. Med Udsigt over Gumlernes indbyrdes Slaegtskab. E Mus lundii 3–2:321

  • Woodruff DC (2014) The anatomy of the bifurcated neural spine and its occurence within Tetrapoda. J Morphol 275:1053–1065. doi: 10.1002/jmor.20283

    Article  PubMed  Google Scholar 

  • Youlatos D (2003) Osteological correlates of tail prehensility in carnivorans. J Zool 259:423–430. doi: 10.1017/S0952836903003431

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to Rodolfo Salas-Gismondi (MUSM), Samuel McLeod and Vanessa Rhue (both LACM), Castor Cartelle (MCL), and Géraldine Veron (MNHN), who allowed access to the collections under their care. Rodolfo Salas-Gismondi (MUSM) and Mario Urbina (MUSM) are thanked for collecting numerous specimens of Thalassocnus. Specimens of the MNHN included in the present work as well as in the preceding installments of the series (Amson et al. 2014a, b) were collected by Robert Hoffstetter and Christian de Muizon with funds of the CNRS (Centre National de la Recherche Scientifique), the MNHN, and the IFEA (Institut Français d’Études Andines). François Pujos (CCT-CONICET-Mendoza) and Rodolfo Salas-Gismondi (MUSM) are acknowledged for the assistance they rendered regarding general xenarthran questions. We thank Colas Bouillet (MNHN), Batz Le Dimet (MNHN), Philippe Richir (MNHN), and Renaud Vacant (CNRS) for preparing and/or helping prepare some of the fossils included in this study. Christian Lemzaouda and Philippe Loubry (CNRS) are thanked for taking the photographs that illustrate this paper. We are grateful to Justine Jacquot-H for the realization of the life restoration. Malcolm T. Sanders (MNHN) is thanked for making the line drawing of the articulated skeleton of MNHN.F.SAS734 (T. natans, holotype). Finally, we thank the two anonymous reviewers for the considerable improvement they brought to the manuscript. The editor, John Wible, should also receive our gratitude for the amelioration brought to the manuscript as well as to those of the preceding installments of the series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Amson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amson, E., Argot, C., McDonald, H.G. et al. Osteology and Functional Morphology of the Axial Postcranium of the Marine Sloth Thalassocnus (Mammalia, Tardigrada) with Paleobiological Implications. J Mammal Evol 22, 473–518 (2015). https://doi.org/10.1007/s10914-014-9280-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9280-7

Keywords

Navigation