Journal of Mammalian Evolution

, Volume 22, Issue 4, pp 473–518 | Cite as

Osteology and Functional Morphology of the Axial Postcranium of the Marine Sloth Thalassocnus (Mammalia, Tardigrada) with Paleobiological Implications

  • Eli AmsonEmail author
  • Christine Argot
  • H. Gregory McDonald
  • Christian de Muizon
Original Paper


The gross morphology of the axial postcranium of Thalassocnus is presented here, completing the description of the skeleton of the genus. Thalassocnus is characterized by a low spinous process on C7, a cranially shifted position of the diaphragmatic vertebra, a great number of caudal vertebrae, the morphology of their transverse processes, and the conservation of the craniocaudal length of their centra up to Ca19. Additionally, the late species of Thalassocnus feature cranial articular surfaces of the atlas that are oriented cranioventrally and thoracolumbar vertebrae with spinous processes that are more inclined caudally, shorter craniocaudally, and have a smaller apex than in earlier species. In the late species, the thoracolumbar vertebrae are also characterized by zygapophyseal articulations that are more conspicuously concavo-convex, and by ribs that are affected by osteosclerosis and pachyostosis. Thalassocnus yaucensis additionally differs from the earlier species of the genus in featuring thoracolumbar vertebral centra that are shortened craniocaudally. The morphology of the axial postcranium of Thalassocnus is consistent with a reduced amount of time spent in a terrestrial habitat. Furthermore, the overall body size and extensive and extreme osteosclerosis of Thalassocnus suggest that bottom-walking was part of its modes of swimming. The tail was probably involved in diving and equilibration but did not contribute to propulsion. A downturned position of the head is inferred for the late species of Thalassocnus, and is probably related to grazing activity on the seafloor. The stabilized vertebral column may be related to the digging behavior purported in Thalassocnus. The aquatic functions of the entire skeleton of Thalassocnus are reviewed.


Aquatic adaptation Axial postcranium Functional anatomy Marine mammal Megatheria Pisco Formation Thalassocnus 


Regions of the vertebral column:










Caudal (not included in the synsacrum, see below)

Institutional abbreviations:


Natural History Museum of Los Angeles County, Los Angeles, California, USA


Museu de Ciencias Naturais da Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil


Muséum national d’Histoire naturelle, Paris, France


Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Lima, Peru


Burke Museum, University of Washington, Seattle, Washington, USA



We are indebted to Rodolfo Salas-Gismondi (MUSM), Samuel McLeod and Vanessa Rhue (both LACM), Castor Cartelle (MCL), and Géraldine Veron (MNHN), who allowed access to the collections under their care. Rodolfo Salas-Gismondi (MUSM) and Mario Urbina (MUSM) are thanked for collecting numerous specimens of Thalassocnus. Specimens of the MNHN included in the present work as well as in the preceding installments of the series (Amson et al. 2014a, b) were collected by Robert Hoffstetter and Christian de Muizon with funds of the CNRS (Centre National de la Recherche Scientifique), the MNHN, and the IFEA (Institut Français d’Études Andines). François Pujos (CCT-CONICET-Mendoza) and Rodolfo Salas-Gismondi (MUSM) are acknowledged for the assistance they rendered regarding general xenarthran questions. We thank Colas Bouillet (MNHN), Batz Le Dimet (MNHN), Philippe Richir (MNHN), and Renaud Vacant (CNRS) for preparing and/or helping prepare some of the fossils included in this study. Christian Lemzaouda and Philippe Loubry (CNRS) are thanked for taking the photographs that illustrate this paper. We are grateful to Justine Jacquot-H for the realization of the life restoration. Malcolm T. Sanders (MNHN) is thanked for making the line drawing of the articulated skeleton of MNHN.F.SAS734 (T. natans, holotype). Finally, we thank the two anonymous reviewers for the considerable improvement they brought to the manuscript. The editor, John Wible, should also receive our gratitude for the amelioration brought to the manuscript as well as to those of the preceding installments of the series.

Supplementary material

10914_2014_9280_MOESM1_ESM.xlsx (12 kb)
Online Resource 1. Specimen numbers of the axial postcranium material of Thalassocnus. (XLSX 12 kb)
10914_2014_9280_MOESM2_ESM.pdf (156 kb)
Online Resource 2. Tables of measurements of the axial postcranium of Thalassocnus. (PDF 155 kb)


  1. Amson E, Argot C, McDonald HG, Muizon C de (2014a) Osteology and functional morphology of the forelimb of the marine sloth Thalassocnus (Mammalia, Tardigrada) J Mammal Evol. Published online 07/08/2014. doi:  10.1007/s10914-014-9268-3
  2. Amson E, Muizon C de (2014) A new durophagous phocid (Mammalia: Carnivora) from the late Neogene of Peru and considerations on monachine seals phylogeny. J Syst Palaeontol 12:523–548. doi:  10.1080/14772019.2013.799610
  3. Amson E, Argot C, McDonald HG, Muizon C de (2014b) Osteology and functional morphology of the hind limb of the marine sloth Thalassocnus (Mammalia, Tardigrada) J Mammal Evol. doi:  10.1007/s10914-014-9274-5
  4. Amson E, Muizon C de, Domning DP, Argot C, Buffrénil V de (in press) Bone histology as a clue for resolving the puzzle of a dugong rib in the Pisco Formation, Peru. J Vertebr Paleontol.Google Scholar
  5. Amson E,Muizon C de, LaurinM, Argot C, Buffrénil V de (2014c) Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc R Soc B 281:20140192. doi:  10.1098/rspb.2014.0192
  6. Bargo MS, Toledo N, Vizcaíno SF (2006) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263. doi:  10.1002/jmor CrossRefPubMedGoogle Scholar
  7. Barnes LG (2013) A new genus and species of late Miocene paleoparadoxiid (Mammalia, Desmostylia) from California. Contrib Sci 521:51–114Google Scholar
  8. Barone R (1968) Anatomie comparée des Mammifères domestiques, Tome 2, Arthrologie et Myologie. Imprimerie des Beaux-Arts, LyonGoogle Scholar
  9. Beatty BL (2009) New material of Cornwallius sookensis (Mammalia: Desmostylia) from the Yaquina Formation of Oregon. J Vertebr Paleontol 29:894–909CrossRefGoogle Scholar
  10. Bebej RM, Ul-Haq M, Zalmout IS, Gingerich PD (2012) Morphology and function of the vertebral column in Remingtonocetus domandaensis (Mammalia, Cetacea) from the middle Eocene Domanda Formation of Pakistan. J Mammal Evol 19:77–104. doi:  10.1007/s10914-011-9184-8 CrossRefGoogle Scholar
  11. Bender R, Bender N (2013) Swimming and diving behavior in apes (Pan troglodytes and Pongo pygmaeus): first documented report. Am J Phys Anthropol 152:156–62. doi:  10.1002/ajpa.22338 CrossRefPubMedGoogle Scholar
  12. Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168CrossRefPubMedGoogle Scholar
  13. Buchholtz EA (1998) Implications of vertebral morphology for locomotor evolution in early Cetacea. In: Thewissen JGM (ed) The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea, Plenum Press, New York, pp 325–352CrossRefGoogle Scholar
  14. Buchholtz EA (2001) Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). J Zool 253:175–190. doi:  10.1017/S0952836901000164 CrossRefGoogle Scholar
  15. Buchholtz EA, Stepien CC (2009) Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evol & Dev 11:69–79. doi:  10.1111/j.1525-142×.2008.00303.× CrossRefGoogle Scholar
  16. Canoville A, Laurin M (2010) Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biol J Linn Soc 100:384–406. doi:  10.1111/j.1095-8312.2010.01431.x CrossRefGoogle Scholar
  17. Cartelle C, De Iuliis G, Ferreira RL (2009) Systematic revision of tropical Brazilian scelidotheriine sloths (Xenarthra, Mylodontoidea). J Vertebr Paleontol 29:555–566CrossRefGoogle Scholar
  18. Cartelle C, Fonseca JS (1983) Contribuição ao melhor conhecimento da pequena preguiça terrícola Nothrotherium maquinense (Lund) Lydekker, 1889. Lundiana 2:127–181Google Scholar
  19. Coughlin BL, Fish FE (2009) Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. J Mammal 90:675–679CrossRefGoogle Scholar
  20. De Iuliis G, Gaudin TJ, Vicars MJ (2011) A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54:171–205. doi:  10.1111/j.1475-4983.2010.01001.x CrossRefGoogle Scholar
  21. Domning DP (1977) An ecological model for late Tertiary sirenian evolution in the North Pacific Ocean. Syst Biol 25:352–362Google Scholar
  22. Domning DP (2001a) The earliest known fully quadrupedal sirenian. Nature 413:625–627. doi:  10.1038/35098072 CrossRefPubMedGoogle Scholar
  23. Domning DP (2001b) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50. doi:  10.1016/S0031-0182(00)00200-5 CrossRefGoogle Scholar
  24. Domning DP (2002) The terrestrial posture of desmostylians. Smithsonian Contrib Paleobiol 1959:99–111Google Scholar
  25. Domning DP, Beatty BL (2007) Use of tusks in feeding by dugongid sirenians: observations and tests of hypotheses. Anat Rec 290:523–38. doi:  10.1002/ar.20540 CrossRefGoogle Scholar
  26. Domning DP, Buffrénil V de (1991) Hydrostasis in the Sirenia: quantitative data and functional interpretations. Mar Mammal Sci 7:331–368Google Scholar
  27. Dor M (1937) La Morphologie de la Queue des Mammifères dans ses Rapports avec la Locomotion. Impressions Pierre André, ParisGoogle Scholar
  28. Dunstone N (1998) Adaptations to the semi-aquatic habit and habitat. In: Dunstone N, Gorman ML (eds) Behaviour and Ecology of Riparian Mammals. Cambridge University Press, New York, pp 1–16CrossRefGoogle Scholar
  29. Ehret DJ, Macfadden BJ, Jones DS, DeVries TJ, Foster DA, Salas-Gismondi R (2012) Origin of the white shark Carcharodon (Lamniformes: Lamnidae) based on recalibration of the Upper Neogene Pisco Formation of Peru. Palaeontology 55:1139–1153. doi:  10.1111/j.1475-4983.2012.01201.x CrossRefGoogle Scholar
  30. Evans HE, Lahunta A de (2013) Miller’s Anatomy of the Dog. 4th edn. Saunders, St. LouisGoogle Scholar
  31. Fariña RA, Blanco RE (1996) Megatherium, the stabber. Proc R Soc B 263:1725–1729CrossRefPubMedGoogle Scholar
  32. Fish FE (1982) Function of the compressed tail of surface swimming muskrats (Ondatra zibethicus). J Mammal 63:591–597CrossRefGoogle Scholar
  33. Fish FE (1994) Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J Mammal 75:989–997CrossRefGoogle Scholar
  34. Fish FE (2000) Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale. Physiol Biochem Zool 73:683–98. doi:  10.1086/318108 CrossRefPubMedGoogle Scholar
  35. Fish FE, Smelstoys J, Baudinette R V., Reynolds PS (2002) Fur does not fly, it floats: buoyancy of pelage in semi-aquatic mammals. Aquat Mamm 28:103–112Google Scholar
  36. Gaudin TJ (1999) The morphology of xenarthrous vertebrae (Mammalia: Xenarthra). Fieldiana Geol New Ser 41:1–38Google Scholar
  37. Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140:255–305. doi:  10.1111/j.1096-3642.2003.00100.x CrossRefGoogle Scholar
  38. Gaudin TJ, Biewener AA (1992) The functional morphology of xenarthrous vertebrae in the armadillo Dasypus novemcinctus (Mammalia, Xenarthra). J Morphol 214:63–81CrossRefPubMedGoogle Scholar
  39. Germain D, Laurin M (2005) Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda). Zool Scripta 34:335–350. doi:  10.1111/j.1463-6409.2005.00198.x CrossRefGoogle Scholar
  40. Hautier L, Weisbecker V, Sánchez-Villagra MR, Goswami A, Asher RJ (2010) Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc Natl Acad Sci USA 107:18903–8. doi:  10.1073/pnas.1010335107 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Hautier L, Sarr R, Tabuce R, Lihoreau F, Adnet S, Domning DP, Samb M, Hameh PM (2012) First prorastomid sirenian from Senegal (Western Africa) and the Old World origin of sea cows. J Vertebr Paleontol 32:1218–1222CrossRefGoogle Scholar
  42. Hayashi S, Houssaye A, Nakajima Y, Chiba K, Ando T, Sawamura H, Inuzuka N, Kaneko N, Osaki T (2013) Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8:e59146. doi:  10.1371/journal.pone.0059146
  43. Hickman GC (1979) The mammalian tail: a review of functions. Mammal Rev 9:143–157CrossRefGoogle Scholar
  44. Hoffstetter R (1952) Les mammifères Pléistocènes de la République de l’Équateur. Mém Soc Géol France 31:375–488Google Scholar
  45. Hoffstetter R (1961) Description d’un squelette de Planops (Gravigrade du Miocène de Patagonie). Mammalia 25:1–96CrossRefGoogle Scholar
  46. Horgan P, Booth D, Nichols C, Lanyon JM (2014) Insulative capacity of the integument of the dugong (Dugong dugon): thermal conductivity, conductance and resistance measured by in vitro heat flux. Mar Biol 161:1395–1407 doi:  10.1007/s00227-014-2428-4 CrossRefGoogle Scholar
  47. Houssaye A (2009) “Pachyostosis” in aquatic amniotes: a review. Integr Zool 4:325–40. doi:  10.1111/j.1749-4877.2009.00146.x CrossRefPubMedGoogle Scholar
  48. Howell AB (1930) Aquatic Mammals: Their Adaptations to Life in the Water. Charles C. Thomas, SpringfieldGoogle Scholar
  49. Howell AB (1937) The swimming mechanism of the platypus. J Mammal 18:217–222CrossRefGoogle Scholar
  50. Hugi J, Sánchez-Villagra MR (2012) Life history and skeletal adaptations in the Galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological data—a comparative study of iguanines. J Herpetol 46:312–324. doi:  10.1670/11-071 CrossRefGoogle Scholar
  51. Husar SL (1978) Dugong dugon. Mammal Species 88:1–7Google Scholar
  52. Inuzuka N (2000) Aquatic adaptations in desmostylians. Hist Biol 14:97–113CrossRefGoogle Scholar
  53. Inuzuka N (2005) The Stanford skeleton of Paleoparadoxia (Mammalia: Desmostylia). Bull Ashoro Mus Paleontol 3:3–110Google Scholar
  54. Iverson SJ (2008) Blubber. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals Academic Press, Amsterdam, pp 115–120Google Scholar
  55. Jenkins FA Jr (1970) Anatomy and function of expanded ribs in certain edentates and primates. J Mammal 51:288–301CrossRefPubMedGoogle Scholar
  56. Kojeszewski T, Fish FE (2007) Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer. J Exp Biol 210:2411–8. doi:  10.1242/jeb.02790 CrossRefPubMedGoogle Scholar
  57. Kooyman GL (1973) Respiratory adaptations in marine mammals. Am Zool 13:457–468CrossRefGoogle Scholar
  58. Kriloff A, Germain D, Canoville A, Vincent P, Sache M, Laurin M (2008) Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference. J Evol Biol 21:807–26. doi:  10.1111/j.1420-9101.2008.01512.x CrossRefPubMedGoogle Scholar
  59. Kuo J (2005) A revision of the genus Heterozostera (Zosteraceae). Aquatic Botany 81:97–140. doi:  10.1016/j.aquabot.2004.10.005 CrossRefGoogle Scholar
  60. Leidy J (1855) A memoir on the extinct sloth tribe of North America. Smithsonian Contrib Knowl 7:1–68Google Scholar
  61. Lewis ME (2008) The femur of extinct bunodont otters in Africa (Carnivora, Mustelidae, Lutrinae). Comptes Rendus Palevol 7:607–627. doi:  10.1016/j.crpv.2008.09.010 CrossRefGoogle Scholar
  62. Liwanag HEM, Berta A, Costa DP, Abney M, Williams TM (2012) Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living. Biol J Linn Soc 106:926–939. doi:  10.1111/j.1095-8312.2012.01900.x CrossRefGoogle Scholar
  63. Lull RS (1929) A remarkable ground sloth. Mem Peabody Mus Yale Univ 3:1–39. doi:  10.1002/asna.19292372003 Google Scholar
  64. Marsh H (2008) Dugong (Dugong dugon). In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, Amsterdam, pp 332–335Google Scholar
  65. Marshall CD, Maeda H, Iwata M, Furuta M, Asano S, Rosas F, Reep RL (2003) Orofacial morphology and feeding behaviour of the dugong, Amazonian, West African and Antillean manatees (Mammalia: Sirenia): functional morphology of the muscular-vibrissal complex. J Zool 259:245–260. doi:  10.1017/S0952836902003205 CrossRefGoogle Scholar
  66. McDonald HG (1977) Description of the osteology of the extinct gravigrade edentate Megalonyx with observations on its ontogeny, phylogeny, and functional anatomy. Dissertation, University of Florida, GainesvilleGoogle Scholar
  67. McDonald HG (2003) Xenarthran skeletal anatomy: primitive or derived? Senckenb Biol 83:5–17Google Scholar
  68. McDonald HG, Muizon C de (2002) The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). J Vertebr Paleontol 22:349–365Google Scholar
  69. McNab BK (1985) Energetics, population biology, and distribution of xenarthrans, living and extinct. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington, D.C., pp 219–232Google Scholar
  70. Muizon C de, Domning DP (1985) The first records of fossil sirenians in the southeastern Pacific Ocean. Bull Mus natl Hist nat Sec C, 4ème sér 7:189–213Google Scholar
  71. Muizon C de, McDonald HG (1995) An aquatic sloth from the Pliocene of Peru. Nature 375:224–227. doi:  10.1038/375224a0
  72. Muizon C de, McDonald HG, Salas R, Urbina M (2003) A new early species of the aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the late Miocene of Peru. J Vertebr Paleontol 23:886–894. doi:  10.1671/2361-13
  73. Muizon C de, McDonald HG, Salas R, Urbina M (2004a) The evolution of feeding adaptations of the aquatic sloth Thalassocnus. J Vertebr Paleontol 24:398–410. doi:  10.1671/2429b
  74. Muizon C de, McDonald HG, Salas R, Urbina M (2004b) The youngest species of the aquatic sloth Thalassocnus and a reassessment of the relationships of the nothrothere sloths (Mammalia: Xenarthra). J Vertebr Paleontol 24:287–397. doi:  10.1671/2429a
  75. Navarrete D, Ortega J (2011) Tamandua mexicana (Pilosa: Myrmecophagidae). Mammal Species 43:56–63. doi:  10.1644/874.1 CrossRefGoogle Scholar
  76. Nishiwaki M, Marsh H (1985) Dugong - Dugong dugon. In: Ridgway SH, Harrison RJ (eds) Handbook of Marine Mammals. Vol. 3. The Sirenians and Baleen Whales. Academic Press, London, pp 1–32Google Scholar
  77. Nyakatura JA, Fischer MS (2010) Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth. J Exp Biol 213:4278–90. doi:  10.1242/jeb.047647 CrossRefPubMedGoogle Scholar
  78. Owen R (1842) Description of the skeleton of an extinct gigantic sloth, Mylodon robustus, Owen, with observations on the osteology, natural affinities, and probable habits of the megatherioid quadrupeds in general. R Coll Surg Engl London 1–176, 24 platesGoogle Scholar
  79. Owen R (1861) Memoir on the Megatherium, or giant ground-sloth of America (Megatherium americanum, Cuvier). Phil Trans R Soc London. Williams and Norgate, London, p 84, 27 platesGoogle Scholar
  80. Palmeirim JM, Hoffmann RS (1983) Galemys pyrenaicus. Mammal Species 207:1–5CrossRefGoogle Scholar
  81. Pasitschniak-Arts BM, Marinelli L (1998) Ornithorhynchus anatinus. Mammal Species 585:1–9CrossRefGoogle Scholar
  82. Pierce SE, Clack JA, Hutchinson JR (2011) Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. J Anat 219:502–14. doi:  10.1111/j.1469-7580.2011.01406.x PubMedCentralCrossRefPubMedGoogle Scholar
  83. Pujos F, Salas R (2004) A new species of Megatherium (Mammalia: Xenarthra: Megatheriidae) from the Pleistocene of Sacaco and Tres Ventanas, Peru. Palaeontology 47:579–604. doi:  10.1111/j.0031-0239.2004.00376.x CrossRefGoogle Scholar
  84. Quemeneur S, Buffrénil V de, Laurin M (2013) Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol J Linn Soc 109:644–655. doi:  10.1111/bij.12066
  85. Reynolds JE III, Powell JA, Taylor CR (2008) Manatees Trichechus manatus, T. senegalensis, and T. inunguis. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of Marine Mammals. Academic Press, Amsterdam, pp 682–691Google Scholar
  86. Ribak G, Weihs D, Arad Z (2004) How do cormorants counter buoyancy during submerged swimming? J Exp Biol 207:2101–2114. doi:  10.1242/jeb.00997 CrossRefPubMedGoogle Scholar
  87. Salas R, Pujos F, Muizon C de (2005) Ossified meniscus and cyamo-fabella in some fossil sloths: a morpho-functional interpretation. Geobios 38:389–394. doi:  10.1016/j.geobios.2003.11.009
  88. Sánchez-Villagra MR, Narita Y, Kuratani S (2007) Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst Biodivers 5:1–7. doi:  10.1017/S1477200006002258 CrossRefGoogle Scholar
  89. Scott WB (1903–1904) Mammalia of the Santa Cruz beds. Reports of the Princeton University Expedition to Patagonia 5:1–490. doi:  10.1525/mua.2006.29.2.153
  90. Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh der K Ned Akad van Wet Natuurkd 42:1–128Google Scholar
  91. Stock C (1925) Cenozoic gravigrade edentates of western North America, with special reference to the Pleistocene Megalonychinae and Mylodontidae of Rancho La Brea. Carnegie Inst Washington Publ 331:1–206Google Scholar
  92. Tarasoff FJ, Bisaillon A, Piérard J, Whitt AP (1972) Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Can J Zool 50:915–29CrossRefPubMedGoogle Scholar
  93. Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31.doi:  10.1080/10292380009380550
  94. Taylor WP (1914) The problem of aquatic adaptation in the Carnivora, as illustrated in the osteology and evolution of the sea-otter. Univ Calif Publ Geol Sci 7:465–495Google Scholar
  95. Thewissen JGM, Fish FE (1997) Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482–490Google Scholar
  96. Thewissen JGM, Taylor MA (2007) Aquatic adaptations in the limbs of amniotes. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 310–322Google Scholar
  97. Tito G (2008) New remains of Eremotherium laurillardi (Lund, 1842) (Megatheriidae, Xenarthra) from the coastal region of Ecuador. J South Am Earth Sci 26:424–434. doi:  10.1016/j.jsames.2008.05.001 CrossRefGoogle Scholar
  98. Wall W, Heinbaugh K (1999) Locomotor adaptations in Metamynodon planifrons compared to other Amynodontids (Perissodactyla, Rhinocerotoidea). Natl Park Paleontol Res 4:8–17Google Scholar
  99. Willey JS, Blob RW (2004) Tail kinematics of juvenile common snapping turtles during aquatic walking. J Herpetol 38:360–369. doi:  10.1670/48-04A CrossRefGoogle Scholar
  100. Wilsson L (1971) Observations and experiments on the ethology of the European beaver (Castor fiber L.). A study in the development of phylogenetically adapted behaviour in a highly specialized mammal. Viltrevy 8:113–266Google Scholar
  101. Winge H (1915) E Jordfundne og nulevende Gumlere (Edentata) fra Lagoa Santa, Minas Geraes, Brasilien. Med Udsigt over Gumlernes indbyrdes Slaegtskab. E Mus lundii 3–2:321Google Scholar
  102. Woodruff DC (2014) The anatomy of the bifurcated neural spine and its occurence within Tetrapoda. J Morphol 275:1053–1065. doi:  10.1002/jmor.20283 CrossRefPubMedGoogle Scholar
  103. Youlatos D (2003) Osteological correlates of tail prehensility in carnivorans. J Zool 259:423–430. doi:  10.1017/S0952836903003431 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eli Amson
    • 1
    Email author
  • Christine Argot
    • 1
  • H. Gregory McDonald
    • 2
  • Christian de Muizon
    • 1
  1. 1.Département Histoire de la Terre, Muséum national d’Histoire naturelle - Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements(CR2P: CNRS, MNHN, UPMC-Paris 06; Sorbonne Universités)ParisFrance
  2. 2.Museum Management ProgramNational Park ServiceFort CollinsUSA

Personalised recommendations