Skip to main content

Advertisement

Log in

Phylogenetic Relationships of Extinct Cetartiodactyls: Results of Simultaneous Analyses of Molecular, Morphological, and Stratigraphic Data

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Although some recent morphological and molecular studies agree that Cetacea is closely related to Hippopotamidae, there is little consensus on the phylogeny within Cetartiodactyla. We addressed this problem by conducting two analyses: (1) a simultaneous cladistic analysis of intrinsic data (morphology and molecules) and (2) a stratocladistic analysis, which included morphological, molecular, and stratigraphic data. Unlike previous simultaneous analyses, we had the opportunity to include data from the recently described hindlimbs of protocetid and pakicetid cetaceans. Our intrinsic dataset includes 73 taxa scored for 8,229 informative characters, of which 208 are morphological and 8,021 molecular. Both analyses supported the exclusion of Mesonychia from Cetartiodactyla and a close phylogenetic relationship between Hippopotamidae and Cetacea. Many polytomies in the strict consensus of the most parsimonious trees for the intrinsic dataset can be attributed to differing positions for Raoellidae, which in some trees is the sister-group to Cetacea. Pruning Raoellidae and 18 other taxa from all most parsimonious produced a fully resolved agreement subtree, which indicates that the Old World taxa Cebochoerus and Mixtotherium are successive stem taxa to Whippomorpha (i.e., Cetacea + Hippopotamidae). The main result of adding stratigraphic information to the intrinsic dataset was that we found fewer most parsimonious trees, which in most respects were congruent with a subset of the shortest trees for the intrinsic dataset. Our stratocladistic analysis supports species of Diacodexis as the most basal cetartiodactyls, a clade of suiform cetartiodactyls, a monophyletic Tylopoda that includes Protoceratidae, and a monophyletic Carnivora. We were unable to identify any pre-Miocene stem taxa to Hippopotamidae, thus its ghost lineage is still 39 million years long. The relatively low Bremer support for many nodes in our trees indicates that our phylogenetic hypotheses should be subjected to further testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnason, U., Gullberg, A., Gretarsdottir, S., Ursing, B., and Janke, A. (2000). The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J. Mol. Evol. 50: 569–578.

    PubMed  CAS  Google Scholar 

  • Asher, R. J., Novacek, M. J., and Geisler, J. H. (2003). Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J. Mamm. Evol. 2: 157–184.

    Google Scholar 

  • Bajpai, S., and Gingerich, P. D. (1998). A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc. Natl. Acad. Sci. USA 95: 15464–15468.

    Article  PubMed  CAS  Google Scholar 

  • Behrensmeyer, A. K., Deino, A. L., Hill, A., Kingston, J. D., and Saunders, J. J. (2002). Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur beds, Tugen Hills, Kenya. J. Hum. Evol. 42: 11–38.

    Article  PubMed  Google Scholar 

  • Bodenbender, B. E., and Fisher, D. C. (2001). Stratocladistic analysis of blastoid phylogeny. J. Paleontol. 75: 351–369.

    Google Scholar 

  • Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 785–803.

    Google Scholar 

  • Bremer, K. (1994). Branch support and tree stability. Cladistics 10: 295–304.

    Article  Google Scholar 

  • Colbert, E. H. (1935). Distributional and phylogenetic studies on Indian fossil mammals. IV. The phylogeny of the Indian Suidae and the origin of the Hippopotamidae. Am. Mus. Novit. 799: 1–22.

    Google Scholar 

  • Fisher, D. C. (1992). Stratigraphic parsimony. In: MacClade 3.0 Manual, W. P. Maddison and D. R. Maddison, eds., pp. 124–129, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Fisher, D. C. (1994). Stratocladistics: Morphological and temporal patterns and their relation to phylogenetic process. In: Interpreting the Hierarchy of Nature, L. Grande and O. Rieppel, eds., pp. 133–171, Academic Press, San Diego.

    Google Scholar 

  • Fox, D. L., Fisher, D. C., and Leighton, L. R. (1999). Reconstructing phylogeny with and without temporal data. Science 284: 1816–1819.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J. (1997). More DNA support for a Cetacea/Hippopotamidae clade: The blood-clotting protein gamma-fibrinogen. Mol. Biol. Evol. 14: 537–543.

    PubMed  CAS  Google Scholar 

  • Gatesy, J. (1998). Molecular evidence for the phylogenetic affinities of Cetacea. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 63–111, Plenum, New York.

    Google Scholar 

  • Gatesy, J., and O'Leary, M. A. (2001). Deciphering whale origins with molecules and fossils. Trends Ecol. Evol. 16: 562–570.

    Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, A., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol. Biol. Evol. 13: 954–963.

    PubMed  CAS  Google Scholar 

  • Gatesy, J., Milinkovitch, M., Waddell, V., and Stanhope, M. (1999). Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Syst. Biol. 48: 6–20.

    PubMed  CAS  Google Scholar 

  • Gatesy, J., Matthee, C., DeSalle, R., and Hayashi, C. (2002). Resolution of the supertree/supermatrix paradox. Syst. Biol. 51: 652–664.

    Article  PubMed  Google Scholar 

  • Geisler, J. H. (2001). New morphological evidence for the phylogeny of Artiodactyla, Cetacea, and Mesonychidae. Am. Mus. Novit. 3344: 1–53.

    Google Scholar 

  • Geisler, J. H., and Luo, Z. (1998). Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 163–212, Plenum, New York.

    Google Scholar 

  • Geisler, J. H., and Uhen, M. D. (2003). Morphological support for a close relationship between hippos and whales. J Vertebr. Paleontol. 23: 991–996.

    Google Scholar 

  • Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of Artiodactyla. In: The Phylogeny and Classification of the Tetrapods, Mammals, vol. 2., M. J. Benton, ed., pp. 235–272, Clarendon Press, Oxford.

    Google Scholar 

  • Gingerich, P. D., Haq, M. U., Zalmout, I. S., Khan, I. H., and Malakani, M. S. (2001). Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science 293: 2239–2242.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1–524.

    Google Scholar 

  • Heller, F. (1934). Anthracobunodon weigelti n. gen. et n. sp., ein Artiodactyle aus dem Mitteleozän Geiseltales bei Halle a. S. Paläontologische Zeitschrift 16: 247–263.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic Systematics, University of Illinois Press, Urbana.

    Google Scholar 

  • Hooker, J. J., and Thomas, K. M. (2001). A new species of Amphirhagatherium (Choeropotamidae, Artiodactyla, Mammalia) from the Late Eocene Headon Hill Formation of Southern England and phylogeny of endemic European ‘anthracotherioids.’ Palaeontology 44: 827–853.

    Google Scholar 

  • Hulbert, R. C., Jr. (1998). Postcranial osteology of the North American Middle Eocene protocetid Georgiacetus. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 235–267, Plenum, New York.

    Google Scholar 

  • Joeckel, R. M., and Stavas, J. M. (1996). Basicranial anatomy of Syndyoceras cooki (Artiodactyla, Protoceratidae) and the need for a reappraisal of tylopod relationships. J. Vertebr. Paleontol. 16: 320–327.

    Google Scholar 

  • Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serepentes). Syst. Zool. 38: 7–25.

    Google Scholar 

  • Kluge, A. G., and Wolf, A. J. (1993). Cladistics: What's in a word? Cladistics 9: 183–199.

    Google Scholar 

  • Krishtalka, L., and Stucky, R. K. (1985). Revision of the Wind River faunas, early, Eocene of Central Wyoming. Part 7. Revision of Diacodexis (Mammalia, Artiodactyla). Ann. Carnegie Mus. 54: 413–486.

    Google Scholar 

  • Kumar, K., and Sahni, A. (1985). Eocene mammals from the Upper Subathu Group, Kashmir Himalaya, India. J. Vertebr. Paleontol. 5: 153–168.

    Article  Google Scholar 

  • Langer, P. (2001). Evidence form the digestive tract on phylogenetic relationships in ungulates and whales. J. Zool. Syst. Evol. Res. 39: 77–90.

    Article  Google Scholar 

  • Luo, Z., and Gingerich, P. D. (1999). Terrestrial Mesonychia to aquatic Cetacea: Transformation of the basicranium and evolution of hearing in whales. Univ. Michigan Pap. Paleontol. 31: 1–98.

    Google Scholar 

  • Maddison, W. P., and Maddison, D. R. (2000). MacClade, Version 4.0, Sinauer Associates, Sunderland. Available at http://www.sinauer.com/.

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., and Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature 409: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Matthee, C. A., Burzlaff, J. D., Taylor, J. F., and Davis, S. K. (2001). Mining the mammalian genome for artiodactyl systematics. Syst. Biol. 50: 367–390.

    Article  PubMed  CAS  Google Scholar 

  • Matthew, W. D. (1905). Notice of two new genera of mammals from the Oligocene of South Dakota. Bull. Am. Mus. Nat. Hist. 21: 21–26.

    Google Scholar 

  • Matthew, W. D. (1929) Reclassification of the artiodactyl families. Bull. Geol. Soc. Am. 40: 403–408.

    Google Scholar 

  • Matthew, W. D. (1934). A phylogenetic chart of the Artiodactyla. J. Mammal. 15: 207–209.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Montgelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S RNA mitochondrial sequences. Mol. Biol. Evol. 14: 550–559.

    PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y., Ryder, O. A., and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, M., Rooney, A. P., and Okada, N. (1999). Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: Hippopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. U.S.A. 96: 10261–10266.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, K. C., and Carpenter, J. M. (1996). On simultaneous analysis. Cladistics 12: 221–241.

    Google Scholar 

  • O'Leary, M. A. (1999). Parsimony analysis of total evidence from extinct and extant taxa and the cetacean-artiodactyl question (Mammalia, Ungulata). Cladistics 15: 315–330.

    Article  Google Scholar 

  • O'Leary, M. A. (2001). The phylogenetic position of cetaceans: Further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. Am. Zool. 41: 487–506.

    Google Scholar 

  • O'Leary, M. A., and Geisler, J. H. (1999). The position of Cetacea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst. Biol. 48: 455–490.

    PubMed  Google Scholar 

  • O'Leary, M. A., and Uhen, M. D. (1999). The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology 25: 534–556.

    Google Scholar 

  • Patton, T. H., and Taylor, B. E. (1973). The Protoceratinae (Mammalia, Tylopoda, Protoceratidae) and the systematics of the Protoceratidae. Bull. Am. Mus. Nat. Hist. 150: 351–413.

    Google Scholar 

  • Pickford, M. (1983). On the origins of Hippopotamidae together with descriptions of two new species, a new genus and a new subfamily from the Miocene of Kenya. Geobios 16: 193–217.

    Google Scholar 

  • Radinsky, L. B. (1966). The adaptive radiation of the phenacodontid condylarths and the origin of the Perissodactyla. Evolution 20: 408–417.

    Google Scholar 

  • Rose, K. D. (1985). Comparative osteology of North American dichobunid artiodactyls. J. Paleontol. 59: 1203–1226.

    Google Scholar 

  • Scott, W. B. (1898). Preliminary note on the selenodont artiodactyls of the Uinta Formation. Proc. Am. Philos. Soc. 37: 1–9.

    Google Scholar 

  • Scott, W. B. (1940). The mammalian fauna of the White River Oligocene, Part IV. Artiodactyla. Trans. Am. Philos. Soc. 28: 363–746.

    Google Scholar 

  • Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. (1997). Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388: 666–670.

    PubMed  CAS  Google Scholar 

  • Shimamura, M., Abe, H., Nikaido, M., Ohshima, K., and Okada, N. (1999). Genealogy of families of SINEs in cetaceans and artiodactyls: the presence of a huge superfamily of tRNAGlu-derived families of SINEs. Mol. Biol. Evol. 16: 1046–1060.

    PubMed  CAS  Google Scholar 

  • Sorenson, M. D. (1996). TreeRot, University of Michigan, Ann Arbor. Available at http://people.bu.edu/msoren/TreeRot.html.

  • Sumrall, C. D., and Brochu, C. A. (2003). Resolution, sampling, higher taxa and assumptions in stratocladistic analysis. J. Paleontol. 77: 189–194.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP, Phylogenetic Analysis Using Parsimony ( and Other Methods), Version 4.0b10, Sinauer Associates, Sunderland, MA. Available at http://paup.csit.fsu.edu/.

  • Theodor, M. J., and Foss, S. E. (2005). Deciduous dentitions of Eocene cebochoerid artiodactyls and cetartiodactyl relationships. J. Mamm. Evol. 12 (in press).

  • Thewissen, J. G. M., and Domning, D. P. (1992). The role of phenacodontids in the origin of the modern orders of ungulate mammals. J. Vertebr. Paleontol. 12: 494–504.

    Article  Google Scholar 

  • Thewissen, J. G. M., Williams, E. M., and Hussain, S. T. (2001a). Eocene mammal faunas from Northern Indo-Pakistan. J. Vertebr. Paleontol. 21: 347–366.

    Google Scholar 

  • Thewissen, J. G. M., Williams, E. M., Roe, L. J. and Hussain, S. T. (2001b). Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413: 277–281.

    Article  CAS  Google Scholar 

  • Uhen, M. D. (1999). New species of protocetid archaeocete whale, Eocetus wardii (Mammalia: Cetacea) from the Middle Eocene of North Carolina. J. Paleontol. 73: 512–528.

    Google Scholar 

  • Uhen, M. D. (2001). New material of Eocetus wardii (Mammalia, Cetacea), from the Middle Eocene of North Carolina. Southeastern Geol. 40: 135–148.

    Google Scholar 

  • Viret, J. (1961). Artiodactyla. In: Traité de paléontologie, tome 6, J. Piveteau, ed., pp. 887–1021, Masson et Cie, Paris.

    Google Scholar 

  • Waddell, P. J., and Shelley, S. (2003). Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol. Phylogenet. Evol. 28: 197–224.

    PubMed  CAS  Google Scholar 

  • Webb, S. D., and Taylor, B. E. (1980). The phylogeny of hornless ruminants and a description of the cranium of Archaeomeryx. Bull. Am. Mus. Nat. Hist. 167: 121–157.

    Google Scholar 

  • Williams, E. M. (1998). Synopsis of the earliest cetaceans: Pakicetidae, Ambulocetidae, Remingtonocetidae, and Protocetidae. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 1–28, Plenum, New York.

    Google Scholar 

  • Wilkinson, M. (1992). Ordered versus unordered characters. Cladistics 8: 375–385.

    Article  Google Scholar 

  • Wortman, J. L. (1898). The extinct Camelidae of North America and some associated forms. Bull. Am. Mus. Nat. Hist. 9: 93–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Geisler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisler, J.H., Uhen, M.D. Phylogenetic Relationships of Extinct Cetartiodactyls: Results of Simultaneous Analyses of Molecular, Morphological, and Stratigraphic Data. J Mammal Evol 12, 145–160 (2005). https://doi.org/10.1007/s10914-005-4963-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-005-4963-8

Keywords

Navigation