Skip to main content
Log in

Not withering on the evolutionary vine: systematic revision of the Brown Vine Snake (Reptilia: Squamata: Oxybelis) from its northern distribution

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The genus Oxybelis currently is composed of four taxa despite numerous studies suggesting and describing multiple taxa within the O. aeneus complex. Here, we utilize a multilocus molecular dataset (i.e., cyt b, ND4, 12S, 16S, cmos, PRLR, 3663 bp) to conduct phylogenetic analyses to assess the evolutionary history of Oxybelis. Our molecular analyses find three major lineages of Oxybelis (i.e., O. aeneus complex, O. brevirostris, O. fulgidus complex) with a sister relationship between O. brevirostris and the O. aeneus complex to the exclusion of the O. fulgidus complex. More specifically, O. aeneus appears to harbor at least five taxa currently unrecognized while O. fulgidus was found to be paraphyletic with respect to O. wilsoni, suggesting cryptic diversity and novel taxa in that clade as well. Additionally, we use morphological data in concert with our molecular analyses and the literature to support removing Oxybelis microphthalmus Barbour and Amaral, 1926; Oxybelis potosiensis Taylor, 1941; and Dryophis vittatus Girard, 1854 from the synonymy of O. aeneus. Finally, we describe two new species from Central America and northern South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The molecular data generated during the current study are available in the GenBank repository [https://www.ncbi.nlm.nih.gov/genbank/] while the morphological datasets are available from the corresponding author on reasonable request.

References

  • Arévalo, E. S., Davies, S. K., & Sites Jr., J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in Central Mexico. Systematic Biology, 43, 387–418.

    Google Scholar 

  • Barbour, T., & Amaral, A. d. (1926). A new North American snake. Proceedings of the New England Zoological Club, 9, 79–81.

    Google Scholar 

  • Beebe, W. (1952). Introduction to the ecology of Arima Valley, Trinidad, B.W.I. Zoologica, 37, 157–183.

    Google Scholar 

  • Beheregaray, L. B., & Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology, 6, 9.

    PubMed  PubMed Central  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., & Das, I. (2006). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.

  • Bogert, C. M., & Oliver, J. A. (1945). A preliminary analysis of the herpetofauna of Sonora. Bulletin of the American Museum of Natural History, 83, 297–426.

    Google Scholar 

  • Boulenger, G. A. (1896). Catalogue of the snakes in the British Museum (Natural History) (Vol. 3). London: British Museum (Natural History).

    Google Scholar 

  • Burbrink, F. T., Lawson, R., & Slowinksi, J. B. (2000). MtDNA phylogeography of the North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution, 54, 2107–2118.

    CAS  PubMed  Google Scholar 

  • Chambers, E. A., & Hillis, D. M. (2020). The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology, 69, 184–193.

    PubMed  Google Scholar 

  • Chernomor, O., von Haeseler, A., & Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008.

    PubMed  PubMed Central  Google Scholar 

  • Chifman, J., & Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics, 30, 3317–3324.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chifman, J., & Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology, 374, 35–47.

    PubMed  Google Scholar 

  • Cope, E. D. (1861). Catalogue of the colubrids in the museum of the Academy of Natural Sciences of Philadelphia. Part 3. Proceedings of the Academy of Natural Sciences of Philadelphia, 12, 553–566.

    Google Scholar 

  • Court, J. (1858). Catalogue of reptiles. In L. A. A. G. DeVerteuil (Ed.), Trinidad: its geography, natural resources, administration, present condition, and prospects (pp. 440–441). London: Ward and Lock.

    Google Scholar 

  • Daudin, F. M. (1803). Histoire naturelle des rainettes, des grenouilles et des crapauds (Vol. 6). Paris: F. Dufart.

    Google Scholar 

  • de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: species and speciation (pp. 57–75). New York: Oxford University press..

    Google Scholar 

  • Dowling, H. G. (1951). A proposed standard system of counting ventral in snakes. British Journal of Herpetology, 1, 97–99.

    Google Scholar 

  • Duméril, A. M. C., Bibron, G., & Duméril, A. H. A. (1854). Erpétologie générale ou histoire naturelle complète des reptiles. Tome septième. Deuxième partie, comprenant l'histoire des serpents venimeux. Paris: Librairie Encyclopédique de Roret.

    Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa, A., McKelvy, A. D., Grismer, L. L., Bell, C. D., & Lailvaux, S. P. (2016). A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS One, 11, e0161070.

    PubMed  PubMed Central  Google Scholar 

  • Flouri, T., Jiao, X., Rannala, B., & Yang, Z. (2018). Species tree inference with BPP using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution, 35, 2585–2593.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garman, S. (1887). On West Indian reptiles in the Museum of Comparative Zoology, at Cambridge, Mass. Proceedings of the American Philosophical Society, 24, 278–286.

    Google Scholar 

  • Girard, C. (1854). Report to Lieut. James M. Gillis, U.S.N. upon the reptiles collected during the U.S. naval astronomical expedition to Chile. Report US naval. astronomical expedition southern hemisphere. House of Representatives Document 121, 33rd Congress, 2, 207–220.

  • Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.

    CAS  PubMed  Google Scholar 

  • Günther, A. (1858). Catalogue of colubrine snakes of the British Museum (Vol. XVI). London: British Museum (Natural History).

    Google Scholar 

  • Henderson, R. W. (1980). Ecology and behavior of vine snakes (Ahaetulla, Oxybelis, Thelotornis, Uromacer). Milwaukee Public Museum Press.

  • Hillis, D. M. (2019). Species delimitation in herpetology. Journal of Herpetology, 53, 3–12.

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.

    PubMed Central  Google Scholar 

  • Hoogmoed, M. S., & Gruber, U. (1983). Spix and Wagler type specimens of reptiles and amphibians in the natural history musea in Munich (Germany) and Leiden (the Netherlands). Spixiana (suppl.), 9, 319–415.

    Google Scholar 

  • Jadin, R. C., Townsend, J. H., Castoe, T. A., & Campbell, J. A. (2012). Cryptic diversity in disjunct populations of middle American montane pitvipers: a systematic reassessment of Cerrophidion godmani. Zoologica Scripta, 41, 455–470.

    Google Scholar 

  • Jadin, R. C., Burbrink, F. T., Rivas, G. A., Vitt, L. J., Barrio-Amorós, C., & Guralnick, R. P. (2014). Finding arboreal snakes in an evolutionary tree: phylogenetic placement and systematic revision of the Neotropical birdsnakes. Journal of Zoological Systematics and Evolutionary Research, 52, 257–264.

    Google Scholar 

  • Jadin, R. C., Blair, C., Jowers, M. J., Carmona, A., & Murphy, J. C. (2019). Hiding in the lianas of the tree of life: molecular phylogenetics and species delimitation reveal considerable cryptic diversity of New World vine snakes. Molecular Phylogenetics and Evolution, 134, 61–65.

    PubMed  Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keiser Jr., E. D. (1974). A systematic study of the Neotropical vine snake Oxybelis aeneus (Wagler). Bulletin of the Texas Memorial Museum, 22, 1–51.

    Google Scholar 

  • Keiser Jr., E. D. (1982). Oxybelis aeneus. Catalogue of American Amphibians and Reptiles, 305, 1–4.

    Google Scholar 

  • Keiser Jr., E. D. (1991). Bibliography of the genus Oxybelis Wagler (Serpentes: Colubridae). Smithsonian Herpetological Information Service, 86, 1–45.

    Google Scholar 

  • Knight, A., & Mindell, D. P. (1993). Substitution bias, weighting of DNA sequence evolution, and the phylogenetic position of Fea’s viper. Systematic Biology, 42, 18–31.

    Google Scholar 

  • Köhler, G. (2008). Reptiles of Central America (2nd ed.). Offenbach: Herpeton Verlag.

    Google Scholar 

  • Lawson, R., Slowinski, J. B., Crother, B. I., & Burbrink, F. T. (2005). Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37, 581–601.

    CAS  PubMed  Google Scholar 

  • Leaché, A. D., Zhu, T., Rannala, B., & Yang, Z. (2018). The spectre of too many species. Systematic Biology, 68, 168–181.

    PubMed Central  Google Scholar 

  • McCranie, J. R., Wilson, L. D., & Köhler, G. (2005). Amphibians & reptiles of the Bay Islands and Cayos Cochinos, Bibliomania! Salt Lake City: UT.

    Google Scholar 

  • Mertens, R. (1972). Herpetofauna tobagana Stuttgarter Beiträge zur Naturkunde nr. 252.

  • Mole, R. R., & Urich, F. W. (1894). A preliminary list of the reptiles and batrachians of the island of Trinidad. Journal of the Trinidad Field Naturalist’s Club, 2, 77–90.

    Google Scholar 

  • Murphy, J. C., Jowers, M. J., Lehtinen, R. M., Charles, S., Colli, G. R., Peres Jr., R., Hendry, C., & Pyron, R. A. (2016). Cryptic, sympatric diversity in tegu lizards of the Tupinambis teguixin group (Squamata, Sauria, Teiidae) and the description of three new species. PLoS One, 11, e0158542.

    PubMed  PubMed Central  Google Scholar 

  • Murphy, J. C., Downie, J. R., Smith, J. M., Livingstone, S. M., Mohammed, R. S., Lehtinen, R. M., Eyre, M., Sewlal, J.-A. N., Noriega, N., Casper, G. S., Anton, T., Rutherford, M. G., Braswell, A. L., & Jowers, M. J. (2018). A field guide to the amphibians & reptiles of Trinidad & Tobago. Trinidad and Tobago Field Naturalists´ Club.

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.

    CAS  PubMed  Google Scholar 

  • Nylander, J.A.A. (2004) MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • Oliver, P. M., Adams, M., Lee, M. S., Hutchinson, M. N., & Doughty, P. (2009). Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proceedings of the Royal Society of London B: Biological Sciences, 276, 2001–2007.

    Google Scholar 

  • Padial, J. M., Miralles, A., De la Riva, I., & Vences, M. T. (2010). The integrative future of taxonomy. Frontiers in Zoology, 7, 16.

    PubMed  PubMed Central  Google Scholar 

  • Peters, J. A. (1964). Dictionary of herpetology: a brief and meaningful definition of words and terms used in herpetology. New York, NY: Hafner.

    Google Scholar 

  • Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.

  • Rambaut, A. (2002). Se-Al v2.0a11. Oxford: University of Oxford.

    Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1. 6.

  • Ray, J. M. (2012). Bridging the gap: Interspecific differences in cantilevering ability in a Neotropical arboreal snake assemblage. South American Journal of Herpetology, 7, 35–40.

    Google Scholar 

  • Reaz, R., Bayzid, M. S., & Rahman, M. S. (2014). Accurate phylogenetic tree reconstruction from quartets: a heuristic approach. PLoS One, 9, e104008.

    PubMed  PubMed Central  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    CAS  PubMed  Google Scholar 

  • Roze, J. A. (1966). La Taxonomía y Zoogeografía de los ofidios de Venezuela. Caracas: Ediciones de la Biblioteca, Universidad Central de Venezuela (p. 362).

  • Ruane, S., Richards, S. J., McVay, J. D., Tjaturadi, B., Krey, K., & Austin, C. C. (2018). Cryptic and non-cryptic diversity in New Guinea ground snakes of the genus Stegonotus Duméril, Bibron and Duméril, 1854: a description of four new species (Squamata: Colubridae). Journal of Natural History, 52, 917–944.

    Google Scholar 

  • Sabaj M.H. (2019). Standard symbolic codes for institutional resource collections in herpetology and ichthyology: An Online Reference. Version 7.1 (21 March 2019). Electronically accessible a http://www.asih.org, American Society of Ichthyologists and Herpetologists, Washington, DC.

  • Sukumaran, J., & Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences USA, 114, 1607–11612.

  • Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sunderland: Sinauer Associates.

    Google Scholar 

  • Taylor, E. H. (1941). Herpetology miscellany, No. II. University of Kansas Science Bulletin, 27, 105–132.

    Google Scholar 

  • Townsend, T. M., Alegre, R. E., Kelly, S. T., Wiens, J. J., & Reeder, T. W. (2008). Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Molecular Phylogenetics and Evolution, 47, 129–142.

    CAS  PubMed  Google Scholar 

  • Uetz, P., Freed, P., & Hošek, J. (Eds.) (2018). The reptile database. http://www.reptile-database.org, Accessed 3 March 2018.

  • Van Devender, T. R., Lowe, C. H., & Lawler, H. E. (1994). Factors influencing the distribution of the neotropical vine snake (Oxybelis aeneus) in Arizona and Sonora, Mexico. Herpetological Natural History, 2, 25–42.

    Google Scholar 

  • Villa, J. D., & McCranie, J. R. (1995). Oxybelis wilsoni, a new species of vine snake from Isla de Roatán, Honduras (Serpentes: Colubridae). Revista de Biología Tropical, 43, 297–305.

    CAS  PubMed  Google Scholar 

  • Wagler, J. G. (1824). Anonymous. Serpentum brasiliensium species novae. Isis von Oken, 10, 1097–1098.

    Google Scholar 

  • Wehekind, L. (1960). Trinidad snakes. Journal of the British Guiana Museum of Zoology, 27, 71–76.

    Google Scholar 

  • Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61, 854–865.

    Google Scholar 

  • Zaher, H., Murphy, R. W., Arredondo, J. C., Graboski, R., Machado-Filho, P. R., Mahlow, K., Montingelli, G. G., Quadros, A. B., Orlov, N. L., Wilkinson, M., Zhang, Y.-P., & Grazziotin, F. G. (2019). Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PLoS One, 14, e0216148.

    PubMed  PubMed Central  Google Scholar 

  • Zweifel, R.G. and Norris,K.S. (1955). Contributions to the herpetology of Sonora, Mexico: Descriptions of new subspecies of snakes (Micruroides euryxanthus and Lampropeltis getulus) and miscellaneous collecting notes. American Midland Naturalist, 54, 230–249.

Download references

Acknowledgments

We thank the following individuals and institutions for allowing us to examine specimens and/or tissues under their care: T. Dowling and C. Johnson (ASU); E.J. Ely and L. Scheinberg (CAS); A. Resetar (FMNH); W.E. Duellman, L.J. Welton, and R.M. Brown (KU); R.R. Jackson, F.H. Sheldon, and D.L. Dittman (LSUMZ); J. Rosado, T. Takahashi, and J. Hanken (MCZ); O.A. Flores-Villela (MZFC); G. Bradley and P. Rienthal (UAZ); C.M. Sheehy III, D.C. Blackburn, M.A. Nickerson (UF), and G. Schneider (UMMZ); A. Wynn, S.W. Gotte, and K. de Queiroz (USNM); C.J. Franklin, G. Pandelis, and J.A. Campbell (UTA); and M.G. Rutherford (UWIMZ). Assistance with some specimen data was provided by R.K. Ludwig, A.Y.W. Liew, B.T. Tarchinski (UWEC) and M. Abbatacola (UWSP) and some molecular work by C. Cullum (UWSP). We thank the following people for providing us photographs in life: D.A. Briceño C., W.E. Duellman, C.J. Franklin, M. Patrikeev, L. Porras, J. Reyes-Velasco, L.A. Rodríguez J., and M.G. Rutherford. We thank Tom Anton (FMNH) for providing us with holotype photographs of O. potosiensis. We thank S. Lotzkat for reviewing and improving on an early draft of this manuscript. GR thanks J-.P. Rodríguez and A. Fernández del Valle from the Instituto Venezolano de Investigaciones Científicas (IVIC) for inviting him on the project Evaluación ecológica rápida del bosque Chacaracual: restauración de un paisaje intervenido por la minería de arena, Margarita Island, in October 2013. A collection permit to Gilson Rivas was issued by the Ministerio del Poder Popular para Ecosocialismo y Aguas. JCM would like to thank R. August, A. Braswell, M. Dloogatch, G. Haast, S. Murphy, M. Rutherford, J. Traub, and D. Wasserman for assistance with field and lab work in Trinidad and Tobago. MJJ would like to thank Patrícia Ribeiro, Sofia Mourão, and Susana Lopes (CTM-CIBIO) for laboratory assistance. Trinidad and Tobago collection permits were issued to JCM by R. McFarlane and the Trinidad Wildlife Section of the Trinidad and Tobago Forestry Service and A. Ramsey of the Tobago House of Assembly.

Funding

This material is based on work supported in part by the National Science Foundation under grant no. DEB-1929679 issued to C. Blair. MJJ was supported by the Portuguese Foundation for Science and Technology (FCT, SFRH/BPD/109148/2015)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Jadin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1. Specimens examined

Appendix 1. Specimens examined

Museum acronyms follow Sabaj (2019).

Oxybelis aeneus—(n = 8) Brazil: FMNH 64417 Amazonas; FMNH 19203 Pará; KU R-124605, 124606, 140173, MCZ R-2582, 2778, and 53211 Pará

Oxybelis brevirostris—(n = 2) Ecuador: UTA R-55952-53 Canton San Lorenzo: Parroquia Santa Rita, Esmeraldas

O. koehleri—(n = 34) Costa Rica: FMNH 179061 Cartago, Turrialba; El Salvador: FMNH 10997 Chalatenango; San Jose del Sacare, 3600′; FMNH 10998 Morazán, Divisadero; FMNH 64955, La Libertad, Volcan San Salvador, 1917 Lava, 500 m; FMNH 64956 La Paz, Los Blancos; KU 289907 Usulutan: Isla San Sebastian; Guatemala: FMNH 20088 Izabal: Bobos Plantation, near Playitas; FMNH 20171 and 20418 Sololá: Olas de Moca; UTA R-46795 Chiguimula; UTA R-45880 Huehuetenango; UTA R-22182–83, 33,040, 33,042, 37,256, 39,236, 42,433 Izabal; UTA R-37258 Peten; UTA R-46846 Zacapa, El Arenal; Honduras: FMNH 22231 Tela; FMNH 27050 San Pedro Sula; FMNH 34565, 34571, 34574, 34576, Bay Islands: Roatan, near Coxen Hole; UTA R-55231 Bay Islands: Roatan; FMNH 34770 Yoro, Portillo Grande; FMNH 40872 Gracias; UTA R-46865 Comayagua, Playitos: Aldea “Lo de Reina,” 785 m; UTA R-53176–78 Honduras: Gracias a Dios, Mocorón, 30–50 m. Nicaragua: UTA R-44838 Jinotega, El Paraíso Km 152.5, carretera Jinotega-Matagalpa, 1490 m

O. microphthalmus—(n = 36) USA: Arizona: UAZ 47314 2.8 mi west of Sycamore Canyon; UAZ 519,225 miles east Sycamore Canyon, Ruby Rd.; UAZ 39544 Patagonia Mts.; Santa Cruz County: ASU 33314, ASU 33364, ASU 35069, ASU 35563, UAZ 16787, UAZ 39545; no specific locality: UMMZ 75779. Mexico: Colima: UTA R-57658; Guerrero UAZ 106056, 106058, 38448, 38451, 38455, 38461, 38467, 106051, 106057, 106059, 106054; Oaxaca: UAZ 106055, 117841–43, 178707, 178708; Sonora: UAZ 26972 0.5 miles West Alamos; UAZ 28279 8.8 miles east Alamos; Alamos UAZ 16797, UAZ 26973, ASU 06735, ASU 68990, ASU 88990; 35 miles east of Cannansa junction w/ Aqua Prieta Rd. UAZ 16796

O. potosiensis—(n = 6) Mexico: UIMNH 25069 San Luis Potosí; UTA R-6107–10, 8752, and 12,368 S of Zapotitl, Puebla; UTA R-9014 6.0 mi E San Rafael, road to Rancho Nuevo, Tamaulipas

O. rutherfordi—(n = 20) Tobago: FMNH 251213 Bloody Bay Rd., between Roxborough and Bloody Bay; Trinidad: FMNH 49973 no specific locality; FMNH 49974–75 Brickfield; FMNH 49976 Mount Harris, FMNH 4997785 San Rafael; FMNH 215838 circa 3 miles S Simla-Quarry Rd., on Arima-Blanchisseuse Rd., egg farm; FMNH 215839 circa 2 miles S Simla-Quarry Rd., on Arima-Blanchisseuse Rd.; UTA R-64851 Arima Valley, William Beebe Tropical Research Centre, c. 6 km N Arima, 247 m; Venezuela: FMNH 17839–40 Puerto Viejo, Península de Paria, Sucre; MBLUZ 1268 between San Francisco de Macanao and Cerro Los Cedros, Isla de Margarita, Nueva Esparta.

O. vittatus—(n = 16) Panama: FMNH 152067 Almirante; FMNH 83552, 130674, 131314 Canal Zone: Summit; FMNH 161478 Canal Zone: Barro Colorado Island; FMNH 153665 Coiba Island; FMNH 170132 San Blas Territory: Soskantupu, 8° 57′ N, 77° 44′ W, 1 m; FMNH 154043 Bocas del Toro, 11 km NW Almirante 600 ft.; FMNH 154478, 154517 no locality data; MCZ R-22274, 22231, and 25118 Canal Zone; UF 65037, 65038, and 170469 Canal Zone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadin, R.C., Blair, C., Orlofske, S.A. et al. Not withering on the evolutionary vine: systematic revision of the Brown Vine Snake (Reptilia: Squamata: Oxybelis) from its northern distribution. Org Divers Evol 20, 723–746 (2020). https://doi.org/10.1007/s13127-020-00461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00461-0

Keywords

Navigation