Skip to main content

Advertisement

Log in

A Comparative Study on the In Vitro Effects of the DNA Methyltransferase Inhibitor 5-Azacytidine (5-AzaC) in Breast/Mammary Cancer of Different Mammalian Species

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

An Erratum to this article was published on 26 April 2016

Abstract

Murine models are indispensible for the study of human breast cancer, but they have limitations: tumors arising spontaneously in humans must be induced in mice, and long-term follow up is limited by the short life span of rodents. In contrast, dogs and cats develop mammary tumors spontaneously and are relatively long-lived. This study examines the effects of the DNA methyltransferase (DNMT) inhibitor 5-Azacytidine (5-AzaC) on normal and tumoral mammary cell lines derived from dogs, cats and humans, as proof of concept that small companion animals are useful models of human breast cancer. Our findings show that treatment with 5-AzaC reduces in vitro tumorigenicity in all three species based on growth and invasion assays, mitochondrial activity and susceptibility to apoptosis. Interestingly, we found that the effects of 5-AzaC on gene expression varied not only between the different species but also between different tumoral cell lines within the same species, and confirmed the correlation between loss of methylation in a specific gene promotor region and increased expression of the associated gene using bisulfite sequencing. In addition, treatment with a high dose of 5-AzaC was toxic to tumoral, but not healthy, mammary cell lines from all species, indicating this drug has therapeutic potential. Importantly, we confirmed these results in primary malignant cells isolated from canine and feline adenocarcinomas. The similarities observed between the three species suggest dogs and cats can be useful models for the study of human breast cancer and the pre-clinical evaluation of novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DNMT:

DNA methyltransferase

5-AzaC:

5-Azacytidine

HDAC:

Histone deacetylase

FDA:

Food and Drug administration

MCF10A:

Human normal breast epithelial cell line

MCF10CA1a:

Human malignant breast carcinoma cell line

DMEM:

Dulbecco’s modified Eagle medium

EGF:

Epidermal growth factor

ER:

Oestrogen receptor

MCF7:

Human breast adenocarcinoma cell line

FMEC:

Feline normal mammary epithelial cell line

K12-72.1:

Feline mammary adenocarcinoma cell line

CAT-MT:

Feline mammary carcinoma cell line

FBS:

Fetal bovine serum

CMEC:

Canine normal mammary epithelial cell line

REM134:

Canine mammary carcinoma cell line

CMT12:

Canine mammary carcinoma cell line

ECIS:

Electric Cell-substrate Impedance Sensing

BLMVEC:

Bovine microvessel lung endothelial cells

qRT-PCR:

Quantitative reverse-transcription PCR

DFNA5 :

Non-syndromic hearing impairment protein 5

SFRP1 :

Secreted frizzled-related protein 1

NTN4 :

Netrin 4

SYK:

Spleen tyrosine kinase

FKBP6 :

FK506 binding protein 6

LOXL4 :

Lysyl oxidase-like 4

PON1 :

Paraoxonase 1

TRIM50 :

Tripartite motif-containing 50

OSPBL3 :

Oxysterol-binding protein 3

DKK3 :

Dikkopf-related protein 3

PGP9.5 :

Ubiquitin carboxy-terminal hydrolase L1

HSPBC :

Heat shock protein 1

GAPDH :

Glyceraldehyde 3-phosphate dehydrogenase

HPRT :

Hypoxanthine guaine phosphoribosyl transferase

UBI :

Polyubiquitin

RPL30 :

Ribosomal Protein L30

YWHAZ :

14-3-3 protein zeta

ICC :

Immunocytochemistry

HRP :

Horseradish peroxidase

PBS:

Phosphate buffered saline

BSA:

Bovine serum albumin

TBS:

Tris buffered saline

PFA:

4 % paraformaldehyde

AEC :

3-amino-9-ethylcarbazole

CMADC:

Canine mammary adenocarcinoma-derived cells

FMADC:

Feline mammary adenocarcinoma-derived cells

ECM:

Extracellular matrix

NIH-3T3:

Murine fibroblast cell line

EC:

Endothelial cells

ING1:

Inhibitor of growth family member 1

PDX:

Patient-derived xenograft

References

  1. Young LJ. Mus tales: a hands-on view. J Mammary Gland Biol Neoplasia. 2008;3:343–9.

    Article  Google Scholar 

  2. Rangarajan A, Weinberg RA. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;12:952–9.

    Article  Google Scholar 

  3. Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F. Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res. 2012;3:165–72.

    Article  Google Scholar 

  4. Munson L, Moresco A. Comparative pathology of mammary gland cancers in domestic and wild animals. Breast Dis. 2007;28:7–21.

    Article  CAS  PubMed  Google Scholar 

  5. Uva P, Aurisicchio L, Watters J, Loboda A, Kulkarni A, Castle J, Palombo F, Viti V, Mesiti G, Zappulli V, Marconato L, Abramo F, Ciliberto G, Lahm A, La Monica N, de Rinaldis E. Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics. 2009;10:135.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vail DM, MacEwen EG. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Investig. 2000;18:781–92.

    Article  CAS  Google Scholar 

  7. Mack GS. Clinical trials going to the dogs: canine program to study tumor treatment, biology. J Natl Cancer Inst. 2006;3:161–2.

    Article  Google Scholar 

  8. Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, Bignon YJ, Bernard-Gallon D. Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics. 2014;6:651–64.

    Article  CAS  PubMed  Google Scholar 

  9. Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of Gene-Specific DNA Hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. Am J Pathol. 2014;14:00691–9.

    Google Scholar 

  10. Connolly R, Stearns V. Epigenetics as a therapeutic target in breast cancer. J Mammary Gland Biol Neoplasia. 2012;17:191–204.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Claude-Taupin A, Boyer-Guittaut M, Delage-Mourroux R, Hervouet E. Use of epigenetic modulators as a powerful adjuvant for breast cancer therapies. Methods Mol Biol. 2015;1238:487–509.

    Article  PubMed  Google Scholar 

  12. Lustberg MB, Ramaswamy B. Epigenetic therapy in breast cancer. Curr Breast Cancer Rep. 2011;3:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaminskas E, Farrell A, Abraham S, Baird A, Hsieh LS, Lee SL, Leighton JK, Patel H, Rahman A, Sridhara R, Wang YC, Pazdur R. FDA. approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res. 2005;11:3604–8.

    Article  CAS  PubMed  Google Scholar 

  14. Chang HW, Wang HC, Chen CY, Hung TW, Hou MF, Yuan SS, Huang CJ, Tseng CN. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells. Molecules. 2014;19:3149–59.

    Article  PubMed  Google Scholar 

  15. Chik F, Machnes Z, Szyf M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2’-deoxycytidine. Carcinogenesis. 2014;35:138–44.

    Article  CAS  PubMed  Google Scholar 

  16. Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50:6075–86.

    CAS  PubMed  Google Scholar 

  17. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat. 2001;65:101–10.

    Article  CAS  PubMed  Google Scholar 

  18. Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, Dunn BK, Wakefield LM, Lee MP. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS ONE. 2010;5:e9201.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA, DiMeo TA, Gilmore H, Jefferson DM, Graham RA, Naber SP, Schnitt S, Kuperwasser C. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res. 2010;12:R87.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51:1409–16.

    CAS  PubMed  Google Scholar 

  21. Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y, Khanna R, Tamburini P, Swaroop A, Kandpal RP. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene. 2006;25:2328–38.

    Article  CAS  PubMed  Google Scholar 

  22. Pesavento P, Liu H, Ossiboff RJ, Stucker KM, Heymer A, Millon L, Wood J, van der List D, Parker JS. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses. J Virol Methods. 2009;157:105–10.

    Article  CAS  PubMed  Google Scholar 

  23. Modiano JF, Kokai Y, Weiner DB, Pykett MJ, Nowell PC, Lyttle CR. Progesterone augments proliferation induced by epidermal growth factor in a feline mammary adenocarcinoma cell line. J Cell Biochem. 1991;45:196–206.

    Article  CAS  PubMed  Google Scholar 

  24. Penzo C, Ross M, Muirhead R, Else R, Argyle DJ. Effect of recombinant feline interferon-omega alone and in combination with chemotherapeutic agents on putative tumour-initiating cells and daughter cells derived from canine and feline mammary tumours. Vet Comp Oncol. 2009;7:222–9.

    Article  CAS  PubMed  Google Scholar 

  25. Else RW, Norval M, Neill WA. The characteristics of a canine mammary carcinoma cell line, REM 134. Br J Cancer. 1982;46:675–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolfe LG, Smith BB, Toivio-Kinnucan MA, Sartin EA, Kwapien RP, Henderson RA, Barnes S. Biologic properties of cell lines derived from canine mammary carcinomas. J Natl Cancer Inst. 1986;77:783–92.

    CAS  PubMed  Google Scholar 

  27. Yuan Y, Liu H, Sahin A, Dai JL. Reactivation of SYK expression by inhibition of DNA methylation suppresses breast cancer cell invasiveness. Int J Cancer. 2005;113:654–9.

    Article  CAS  PubMed  Google Scholar 

  28. Xia TS, Shi JP, Ding Q, Liu XA, Zhao Y, Liu YX, Xia JG, Wang S, Ding YB. Reactivation of Syk gene by AZA suppresses metastasis but not proliferation of breast cancer cells. Med Oncol. 2012;29:448–53.

    Article  CAS  PubMed  Google Scholar 

  29. Mund C, Brueckner B, Lyko F. Reactivation of epigenetically silenced genes by DNA methyltransferase inhibitors: basic concepts and clinical applications. Epigenetics. 2006;1:7–13.

    Article  PubMed  Google Scholar 

  30. Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, Okawa Y, Ikeda H, Vallet S, Pozzi S, Ishitsuka K, Ocio EM, Chauhan D, Anderson KC. 5-azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther. 2007;6:1718–27.

    Article  CAS  PubMed  Google Scholar 

  31. Etschmann B, Wilcken B, Stoevesand K, von der Schulenburg A, Sterner-Kock A. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Vet Pathol. 2006;43:934–42.

    Article  CAS  PubMed  Google Scholar 

  32. Penning LC, Vrieling HE, Brinkhof B, Riemers FM, Rothuizen J, Rutteman GR, Hazewinkel HA. A validation of 10 feline reference genes for gene expression measurements in snap-frozen tissues. Vet Immunol Immunopathol. 2007;120:212–22.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Zhao H, Ma T-F, Ge F, Chen C-S, Zhang Y-P. Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer lines treated with and without transient transfection. PLoS ONE. 2015. doi:10.1371/journal.pone.0117058.

    Article  Google Scholar 

  34. Fujikane T, Nishikawa N, Toyota M, Suzuki H, Nojima M, Maruyama R, Ashida M, Ohe-Toyota M, Kai M, Nishidate T, Sasaki Y, Ohmura T, Hirata K, Tokino T. Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat. 2010;122:699–710.

    Article  PubMed  Google Scholar 

  35. Cluzeau T, Robert G, Puissant A, Jean-Michel K, Cassuto JP, Raynaud S, Auberger P. Azacitidine-resistant SKM1 myeloid cells are defective for AZA-induced mitochondrial apoptosis and autophagy. Cell Cycle. 2011;10:2339–43.

    Article  CAS  PubMed  Google Scholar 

  36. O'Neill CH, Riddle PN, Jordan PW. The relation between surface area and anchorage dependence of growth in hamster and mouse fibroblasts. Cell. 1979;16:909–18.

    Article  PubMed  Google Scholar 

  37. Wright TC, Ukena TE, Campbell R, Karnovsky MJ. Rates of aggregation, loss of Anchorage dependence, and tumorigenicity of cultured cells. Proc Natl Acad Sci U S A. 1977;74:258–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keese CR, Bhawe K, Wegener J, Giaever I Real-time impedance assay to follow the invasive activities of metastatic cells in culture. BioTechniques. 2002;33:842–50.

    CAS  PubMed  Google Scholar 

  39. Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst. 2011;136:237–45.

    Article  CAS  PubMed  Google Scholar 

  40. Sato N, Maehara N, Su GH, Goggins M. Effects of 5-aza-2’-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. JNCI J Natl Cancer Inst. 2003;95:327–30.

    Article  CAS  PubMed  Google Scholar 

  41. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, Winn RA. The soft agar colony formation assay. J Vis Exp. 2014;92:e51998.

    PubMed  Google Scholar 

  42. Thakur S, Feng X, Shi ZQ, Ganapathy A, Mishra MK, Atadja P, Morris D, Riabowol K. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS ONE. 2012;7:e43671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Morris Animal Foundation (grant #D12MS-002). We are very grateful for the excellent technical assistance of Don Miller with the PCR and bisulfite sequencing analyses and Leen Bussche for the generation of the primary tumor cell cultures. We would like to thank Jen Olson and José Morales for sample collection and Katie Kelly for grading the tumor samples.

Author’s Contributions

RH carried out all laboratory procedures, was involved in conception and design, and manuscript writing; TC provided expertise and technical assistance with the Electric Cell-substrate Impedance (ECIS) assays; DA provided canine and feline mammary cancer cell lines and SC provided the human cell lines; DA, SC and GVdW were involved in conception and design; GVdW was involved in data analyses and manuscript writing. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlinde R. Van de Walle.

Ethics declarations

Conflict Interests

The authors declare they have no competing interests.

Electronic Supplementary Material

Supplementary Figure 1

(A). Viability of canine, feline and human tumoral mammary cells lines/primary cells treated with 5 μM 5-AzaC as determined by MTT assays. Percent viable cells, compared to non-treated cells, set at 100 %, are shown. n = 3, *: P < 0.05. (B). Expression levels of the gene PGP9.5 in the feline cell line K12–72.1 treated with 5 and 10 μM 5-AzaC as determined by qRT-PCR. Fold changes from non-treated cells is shown. n = 3, *: P < 0.05. (GIF 71 kb)

High Resolution (TIFF 5927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harman, R.M., Curtis, T.M., Argyle, D.J. et al. A Comparative Study on the In Vitro Effects of the DNA Methyltransferase Inhibitor 5-Azacytidine (5-AzaC) in Breast/Mammary Cancer of Different Mammalian Species. J Mammary Gland Biol Neoplasia 21, 51–66 (2016). https://doi.org/10.1007/s10911-016-9350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-016-9350-y

Keywords

Navigation