Skip to main content

Advertisement

Log in

The Role of Activin in Mammary Gland Development and Oncogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

TGFβ contributes to mammary gland development and has paradoxical roles in breast cancer because it has both tumor suppressor and tumor promoter activity. Another member of the TGFβ superfamily, activin, also has roles in the developing mammary gland, but these functions, and the role of activin in breast cancer, are not well characterized. TGFβ and activin share the same intracellular signaling pathways, but divergence in their signaling pathways are suggested. The purpose of this review is to compare the spatial and temporal expression of TGFβ and activin during mammary gland development, with consideration given to their functions during each developmental period. We also review the contributions of TGFβ and activin to breast cancer resistance and susceptibility. Finally, we consider the systemic contributions of activin in regulating obesity and diabetes; and the impact this regulation has on breast cancer. Elevated levels of activin in serum during pregnancy and its influence on pregnancy associated breast cancer are also considered. We conclude that evidence demonstrates that activin has tumor suppressing potential, without definitive indication of tumor promoting activity in the mammary gland, making it a good target for development of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

TGFβ:

Transforming Growth Factor Beta

EMT:

Epithelial and Mesenchymal Transition

Alk:

Activin Receptor-Like Kinase

BMP:

Bone Morphogenic Protein

LAP:

Latency-Associated Peptide

FST:

Follistatin

FSTL3:

Follistatin-Like 3

BAMBI:

Follistatin-Related Gene, FLRG, BMP and Activin Membrane Bound Inhibitor

ARIP:

Activin Receptor-Interacting Proteins

TEB:

Terminal End Bud

ECM:

Extracellular Matrix

WT:

Wild-type

ER:

estrogen receptor

AIF:

Apoptosis-Inducing Factor

TERT:

Telomerase Reverse Transcriptase

HMEC:

Human Mammary Epithelial Cells

PABC:

Pregnancy Associated Breast Cancer

References

  1. Massague J. TGFbeta in cancer. Cell. 2008;134(2):215–30.

    Article  PubMed  CAS  Google Scholar 

  2. Padua D, Massague J. Roles of TGFbeta in metastasis. Cell Res. 2009;19(1):89–102.

    Article  PubMed  CAS  Google Scholar 

  3. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson TB, Cook RW, Chapman SC, Jardetzky TS, Woodruff TK. Beta A versus beta B: is it merely a matter of expression? Mol Cell Endocrinol. 2004;225(1–2):9–17.

    Article  PubMed  CAS  Google Scholar 

  5. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell. 2003;12(4):817–28.

    Article  PubMed  CAS  Google Scholar 

  6. Miettinen PJ, Ebner R, Lopez AR, Derynck R. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol. 1994;127(6 Pt 2):2021–36.

    Article  PubMed  CAS  Google Scholar 

  7. Daly AC, Randall RA, Hill CS. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. 2008;28(22):6889–902.

    Article  PubMed  CAS  Google Scholar 

  8. Liu X, Yue J, Frey RS, Zhu Q, Mulder KM. Transforming growth factor beta signaling through Smad1 in human breast cancer cells. Cancer Res. 1998;58(20):4752–7.

    PubMed  CAS  Google Scholar 

  9. Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.

    PubMed  CAS  Google Scholar 

  10. Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer. 2006;13(2):379–400.

    Article  PubMed  CAS  Google Scholar 

  11. Deli A, Kreidl E, Santifaller S, Trotter B, Seir K, Berger W, et al. Activins and activin antagonists in hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1699–709.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000;404(6776):411–4.

    Article  PubMed  CAS  Google Scholar 

  13. Lopez-Casillas F, Wrana JL, Massague J. Betaglycan presents ligand to the TGF beta signaling receptor. Cell. 1993;73(7):1435–44.

    Article  PubMed  CAS  Google Scholar 

  14. Harrison CA, Gray PC, Vale WW, Robertson DM. Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrinol Metab. 2005;16(2):73–8.

    Article  PubMed  CAS  Google Scholar 

  15. Tsuchida K, Nakatani M, Matsuzaki T, Yamakawa N, Liu Z. Bao Yet al. Novel factors in regulation of activin signaling Mol Cell Endocrinol. 2004;225(1–2):1–8.

    CAS  Google Scholar 

  16. Sugino H, Sugino K, Hashimoto O, Shoji H, Nakamura T. Follistatin and its role as an activin-binding protein. J Med Invest. 1997;44(1–2):1–14.

    PubMed  CAS  Google Scholar 

  17. Schneyer AL, Rzucidlo DA, Sluss PM, Crowley Jr WF. Characterization of unique binding kinetics of follistatin and activin or inhibin in serum. Endocrinology. 1994;135(2):667–74.

    Article  PubMed  CAS  Google Scholar 

  18. Thompson TB, Lerch TF, Cook RW, Woodruff TK, Jardetzky TS. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev Cell. 2005;9(4):535–43.

    Article  PubMed  CAS  Google Scholar 

  19. Schneyer A, Schoen A, Quigg A, Sidis Y. Differential binding and neutralization of activins A and B by follistatin and follistatin like-3 (FSTL-3/FSRP/FLRG). Endocrinology. 2003;144(5):1671–4.

    Article  PubMed  Google Scholar 

  20. Bartholin L, Maguer-Satta V, Hayette S, Martel S, Gadoux M, Bertrand S, et al. FLRG, an activin-binding protein, is a new target of TGFbeta transcription activation through Smad proteins. Oncogene. 2001;20(39):5409–19.

    Article  PubMed  CAS  Google Scholar 

  21. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development. 1991;113(3):867–78.

    PubMed  CAS  Google Scholar 

  22. Faure E, Heisterkamp N, Groffen J, Kaartinen V. Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res. 2000;300(1):89–95.

    PubMed  CAS  Google Scholar 

  23. Silberstein GB, Strickland P, Coleman S, Daniel CW. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol. 1990;110(6):2209–19.

    Article  PubMed  CAS  Google Scholar 

  24. Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science. 1987;237(4812):291–3.

    Article  PubMed  CAS  Google Scholar 

  25. Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol. 2003;163(4):1539–49.

    PubMed  CAS  Google Scholar 

  26. Joseph H, Gorska AE, Sohn P, Moses HL, Serra R. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell. 1999;10(4):1221–34.

    PubMed  CAS  Google Scholar 

  27. Daniel CW, Silberstein GB, Van HK, Strickland P, Robinson S. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  28. Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.

    PubMed  CAS  Google Scholar 

  29. Mieth M, Boehmer FD, Ball R, Groner B, Grosse R. Transforming growth factor-beta inhibits lactogenic hormone induction of beta-casein expression in HC11 mouse mammary epithelial cells. Growth Factors. 1990;4(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  30. Robinson SD, Roberts AB, Daniel CW. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol. 1993;120(1):245–51.

    Article  PubMed  CAS  Google Scholar 

  31. Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development. 2000;127(14):3107–18.

    PubMed  CAS  Google Scholar 

  32. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development. 1992;115(1):49–58.

    PubMed  CAS  Google Scholar 

  33. Jhappan C, Geiser AG, Kordon EC, Bagheri D, Hennighausen L, Roberts AB, et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12(5):1835–45.

    PubMed  CAS  Google Scholar 

  34. Jeruss JS, Santiago JY, Woodruff TK. Localization of activin and inhibin subunits, receptors and SMADs in the mouse mammary gland. Mol Cell Endocrinol. 2003;203(1–2):185–96.

    Article  PubMed  CAS  Google Scholar 

  35. Robinson GW, Hennighausen L. Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development. 1997;124(14):2701–8.

    PubMed  CAS  Google Scholar 

  36. Bussmann UA, Lanuza GM, Bussmann LE. Activin and follistatin in rat mammary gland. Mol Cell Endocrinol. 2004;221(1–2):9–19.

    Article  PubMed  CAS  Google Scholar 

  37. Bloise E, Cassali GD, Ferreira MC, Ciarmela P, Petraglia F, Reis FM. Activin-related proteins in bovine mammary gland: localization and differential expression during gestational development and differentiation. J Dairy Sci. 2010;93(10):4592–601.

    Article  PubMed  CAS  Google Scholar 

  38. Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.

    PubMed  CAS  Google Scholar 

  39. Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Leon S, Bartholin L, et al. Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res. 2007;67(15):7223–9.

    Article  PubMed  CAS  Google Scholar 

  40. Di Loreto C, Reis FM, Cataldi P, Zuiani C, Luisi S, Beltrami CA, et al. Human mammary gland and breast carcinoma contain immunoreactive inhibin/activin subunits: evidence for a secretion into cystic fluid. Eur J Endocrinol. 1999;141(2):190–4.

    Article  PubMed  Google Scholar 

  41. Reis FM, Cobellis L, Tameirao LC, Anania G, Luisi S, Silva IS, et al. Serum and tissue expression of activin a in postmenopausal women with breast cancer. J Clin Endocrinol Metab. 2002;87(5):2277–82.

    Article  PubMed  CAS  Google Scholar 

  42. Liu QY, Niranjan B, Gomes P, Gomm JJ, Davies D, Coombes RC, et al. Inhibitory effects of activin on the growth and morpholgenesis of primary and transformed mammary epithelial cells. Cancer Res. 1996;56(5):1155–63.

    PubMed  CAS  Google Scholar 

  43. Reis FM, Luisi S, Carneiro MM, Cobellis L, Federico M, Camargos AF, et al. Activin, inhibin and the human breast. Mol Cell Endocrinol. 2004;225(1–2):77–82.

    Article  PubMed  CAS  Google Scholar 

  44. Luisi S, Calonaci G, Florio P, Lombardi I, De FC, Bagnoli F, et al. Identification of activin A and follistatin in human milk. Growth Factors. 2002;20(3):147–50.

    Article  PubMed  CAS  Google Scholar 

  45. Muttukrishna S, Fowler PA, George L, Groome NP, Knight PG. Changes in peripheral serum levels of total activin A during the human menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1996;81(9):3328–34.

    Article  PubMed  CAS  Google Scholar 

  46. Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, et al. Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 1995;6(9):1151–61.

    PubMed  CAS  Google Scholar 

  47. Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE, et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest. 2003;112(4):575–87.

    PubMed  CAS  Google Scholar 

  48. Adamson ED, Minchiotti G, Salomon DS. Cripto: a tumor growth factor and more. J Cell Physiol. 2002;190(3):267–78.

    Article  PubMed  CAS  Google Scholar 

  49. Ball EM, Risbridger GP. Activins as regulators of branching morphogenesis. Dev Biol. 2001;238(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  50. Zhao J, Lee M, Smith S, Warburton D. Abrogation of Smad3 and Smad2 or of Smad4 gene expression positively regulates murine embryonic lung branching morphogenesis in culture. Dev Biol. 1998;194(2):182–95.

    Article  PubMed  CAS  Google Scholar 

  51. Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn. 2002;225(1):100–5.

    Article  PubMed  CAS  Google Scholar 

  52. Bierie B, Moses HL. TGF-beta and cancer. Cytokine Growth Factor Rev. 2006;17(1–2):29–40.

    Article  PubMed  CAS  Google Scholar 

  53. Barcellos-Hoff MH, Ewan KB. Transforming growth factor-beta and breast cancer: mammary gland development. Breast Cancer Res. 2000;2(2):92–9.

    Article  PubMed  CAS  Google Scholar 

  54. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117–29.

    Article  PubMed  CAS  Google Scholar 

  55. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  56. Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR, et al. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med. 1998;4(7):802–7.

    Article  PubMed  CAS  Google Scholar 

  57. Pierce Jr DF, Gorska AE, Chytil A, Meise KS, Page DL, Jr Coffey RJ, et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci USA. 1995;92(10):4254–8.

    Article  PubMed  CAS  Google Scholar 

  58. Welch DR, Fabra A, Nakajima M. Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA. 1990;87(19):7678–82.

    Article  PubMed  CAS  Google Scholar 

  59. Becker KA, Lu S, Dickinson ES, Dunphy KA, Mathews L, Schneider SS, et al. Estrogen and progesterone regulate radiation-induced p53 activity in mammary epithelium through TGF-beta-dependent pathways. Oncogene. 2005;24(42):6345–53.

    PubMed  CAS  Google Scholar 

  60. Ewan KB, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. Am J Pathol. 2005;167(2):409–17.

    Article  PubMed  CAS  Google Scholar 

  61. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.

    Article  PubMed  CAS  Google Scholar 

  62. Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK. Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res. 2005;65(17):7968–75.

    PubMed  CAS  Google Scholar 

  63. Cocolakis E, Lemay S, Ali S, Lebrun JJ. The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem. 2001;276(21):18430–6.

    Article  PubMed  CAS  Google Scholar 

  64. Burdette JE, Woodruff TK. Activin and estrogen crosstalk regulates transcription in human breast cancer cells. Endocr Relat Cancer. 2007;14(3):679–89.

    Article  PubMed  CAS  Google Scholar 

  65. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003;144(10):4562–74.

    Article  PubMed  CAS  Google Scholar 

  66. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res. 2000;60(21):5977–83.

    PubMed  CAS  Google Scholar 

  67. Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R, et al. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res. 2002;62(20):5627–31.

    PubMed  CAS  Google Scholar 

  68. Bierie B, Gorska AE, Stover DG, Moses HL. TGF-beta promotes cell death and suppresses lactation during the second stage of mammary involution. J Cell Physiol. 2009;219(1):57–68.

    Article  PubMed  CAS  Google Scholar 

  69. Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood). 2006;231(5):534–44.

    CAS  Google Scholar 

  70. Schulz R, Vogel T, Dressel R, Krieglstein K. TGF-beta superfamily members, ActivinA and TGF-beta1, induce apoptosis in oligodendrocytes by different pathways. Cell Tissue Res. 2008;334(3):327–38.

    Article  PubMed  CAS  Google Scholar 

  71. Katik I, Mackenzie-Kludas C, Nicholls C, Jiang FX, Zhou S, Li H, et al. Activin inhibits telomerase activity in cancer. Biochem Biophys Res Commun. 2009;389(4):668–72.

    Article  PubMed  CAS  Google Scholar 

  72. Li H, Katik I, Liu JP. Uses of telomerase peptides in anti-tumor immune therapy. Methods Mol Biol. 2007;405:61–86.

    Article  PubMed  CAS  Google Scholar 

  73. Li H, Liu JP. Mechanisms of action of TGF-beta in cancer: evidence for Smad3 as a repressor of the hTERT gene. Ann N Y Acad Sci. 2007;1114:56–68.

    Article  PubMed  CAS  Google Scholar 

  74. Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res. 2005;11(2 Pt 2):937s–43.

    PubMed  CAS  Google Scholar 

  75. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res. 2000;2(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  76. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell. 2003;3(6):531–6.

    Article  PubMed  CAS  Google Scholar 

  77. Krneta J, Kroll J, Alves F, Prahst C, Sananbenesi F, Dullin C, et al. Dissociation of angiogenesis and tumorigenesis in follistatin- and activin-expressing tumors. Cancer Res. 2006;66(11):5686–95.

    Article  PubMed  CAS  Google Scholar 

  78. Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T. Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res. 2005;65(5):1877–86.

    Article  PubMed  CAS  Google Scholar 

  79. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 2005;16(4):1987–2002.

    Article  PubMed  CAS  Google Scholar 

  80. Yoshinaga K, Inoue H, Utsunomiya T, Sonoda H, Masuda T, Mimori K, et al. N-cadherin is regulated by activin A and associated with tumor aggressiveness in esophageal carcinoma. Clin Cancer Res. 2004;10(17):5702–7.

    Article  PubMed  CAS  Google Scholar 

  81. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996;10(19):2462–77.

    Article  PubMed  CAS  Google Scholar 

  82. Fordyce C, Fessenden T, Pickering C, Jung J, Singla V, Berman H, et al. DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions. Cancer Prev Res (Phila). 2010;3(2):190–201.

    Article  CAS  Google Scholar 

  83. Gauthier ML, Pickering CR, Miller CJ, Fordyce CA, Chew KL, Berman HK, et al. p38 regulates cyclooxygenase-2 in human mammary epithelial cells and is activated in premalignant tissue. Cancer Res. 2005;65(5):1792–9.

    Article  PubMed  CAS  Google Scholar 

  84. Risbridger GP, Schmitt JF, Robertson DM. Activins and inhibins in endocrine and other tumors. Endocr Rev. 2001;22(6):836–58.

    Article  PubMed  CAS  Google Scholar 

  85. Cipriano SC, Chen L, Kumar TR, Matzuk MM. Follistatin is a modulator of gonadal tumor progression and the activin-induced wasting syndrome in inhibin-deficient mice. Endocrinology. 2000;141(7):2319–27.

    Article  PubMed  CAS  Google Scholar 

  86. Matzuk MM, Finegold MJ, Mather JP, Krummen L, Lu H, Bradley A. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. Proc Natl Acad Sci USA. 1994;91(19):8817–21.

    Article  PubMed  CAS  Google Scholar 

  87. Coerver KA, Woodruff TK, Finegold MJ, Mather J, Bradley A, Matzuk MM. Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol Endocrinol. 1996;10(5):534–43.

    Article  PubMed  CAS  Google Scholar 

  88. Li ZD, Wu Y, Bao YL, Yu CL, Guan LL, Wang YZ, et al. Identification and characterization of human ARIP2 and its relation to breast cancer. Cytokine. 2009;46(2):251–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kulie T, Slattengren A, Redmer J, Counts H, Eglash A, Schrager S. Obesity and women’s health: an evidence-based review. J Am Board Fam Med. 2011;24(1):75–85.

    Article  PubMed  Google Scholar 

  90. Peairs KS, Barone BB, Snyder CF, Yeh HC, Stein KB, Derr RL, et al. Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J Clin Oncol. 2011;29(1):40–6.

    Article  PubMed  Google Scholar 

  91. Duggan C, Irwin ML, Xiao L, Henderson KD, Smith AW, Baumgartner RN, et al. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. J Clin Oncol. 2011;29(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  92. DeCensi A, Gennari A. Insulin breast cancer connection: confirmatory data set the stage for better care. J Clin Oncol. 2011;29(1):7–10.

    Article  PubMed  Google Scholar 

  93. Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, Ageta H, et al. Activin signaling as an emerging target for therapeutic interventions. Cell Commun Signal. 2009;7:15.

    PubMed  Google Scholar 

  94. Zamani N, Brown CW. Emerging Roles for the Transforming Growth Factor-{beta} Superfamily in Regulating Adiposity and Energy Expenditure. Endocr Rev 2010.

  95. Li L, Shen JJ, Bournat JC, Huang L, Chattopadhyay A, Li Z, et al. Activin signaling: effects on body composition and mitochondrial energy metabolism. Endocrinology. 2009;150(8):3521–9.

    Article  PubMed  CAS  Google Scholar 

  96. Brown ML, Schneyer AL. Emerging roles for the TGFbeta family in pancreatic beta-cell homeostasis. Trends Endocrinol Metab. 2010;21(7):441–8.

    Article  PubMed  CAS  Google Scholar 

  97. Mukherjee A, Sidis Y, Mahan A, Raher MJ, Xia Y, Rosen ED, et al. FSTL3 deletion reveals roles for TGF-beta family ligands in glucose and fat homeostasis in adults. Proc Natl Acad Sci USA. 2007;104(4):1348–53.

    Article  PubMed  CAS  Google Scholar 

  98. Albrektsen G, Heuch I, Hansen S, Kvale G. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. Br J Cancer. 2005;92(1):167–75.

    Article  PubMed  CAS  Google Scholar 

  99. Lyons TR, Schedin PJ, Borges VF. Pregnancy and breast cancer: when they collide. J Mammary Gland Biol Neoplasia. 2009;14(2):87–98.

    Article  PubMed  Google Scholar 

  100. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6(4):281–91.

    Article  PubMed  CAS  Google Scholar 

  101. Blakely CM, Stoddard AJ, Belka GK, Dugan KD, Notarfrancesco KL, Moody SE, et al. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res. 2006;66(12):6421–31.

    Article  PubMed  CAS  Google Scholar 

  102. D’Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, et al. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol. 2002;16(9):2034–51.

    Article  PubMed  CAS  Google Scholar 

  103. McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W, et al. Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol. 2006;168(2):608–20.

    PubMed  CAS  Google Scholar 

  104. Flanders KC, Wakefield LM. Transforming growth factor-(beta)s and mammary gland involution; functional roles and implications for cancer progression. J Mammary Gland Biol Neoplasia. 2009;14(2):131–44.

    Article  PubMed  Google Scholar 

  105. Petraglia F, De VD, Gallinelli A, Aguzzoli L, Genazzani AR, Romero R, et al. Abnormal concentration of maternal serum activin-A in gestational diseases. J Clin Endocrinol Metab. 1995;80(2):558–61.

    Article  PubMed  CAS  Google Scholar 

  106. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn. 2011;31(1):66–74.

    Article  PubMed  Google Scholar 

  107. Innes KE, Byers TE. Preeclampsia and breast cancer risk. Epidemiology. 1999;10(6):722–32.

    Article  PubMed  CAS  Google Scholar 

  108. Nechuta S, Paneth N, Velie EM. Pregnancy characteristics and maternal breast cancer risk: a review of the epidemiologic literature. Cancer Causes Control. 2010;21(7):967–89.

    Article  PubMed  Google Scholar 

Download references

Financial and Material Support

The research was supported by funds from Avon Foundation (DJJ), National Institutes of Health (R0-1-CA105452; R01-ES015739, DJJ; R01-DK075058, AS; R21-HD062859, AS) and Department of Defense (W81XWH-10-1-0637, DJJ, KAD)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karen A. Dunphy or D. Joseph Jerry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunphy, K.A., Schneyer, A.L., Hagen, M.J. et al. The Role of Activin in Mammary Gland Development and Oncogenesis. J Mammary Gland Biol Neoplasia 16, 117–126 (2011). https://doi.org/10.1007/s10911-011-9214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-011-9214-4

Keywords

Navigation