Skip to main content

Advertisement

Log in

Insulin Receptor Substrates (IRSs) and Breast Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Insulin receptor substrate (IRS)-1 and IRS-2 are adaptor proteins in the insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) pathway that mediate cell proliferation, migration, and survival. In addition to their role as scaffolding proteins in the cytoplasm, they are able to translocate into the nucleus and regulate gene transcription. IRS levels are developmentally and hormonally regulated in the normal mammary gland and both are essential for normal mammary gland bud formation and lactation. Both IRS-1 and IRS-2 are transforming oncogenes, and induce transformation and metastasis in vitro and in vivo. In breast cancer IRSs have unique functions, with IRS-1 being mainly involved in cell proliferation and survival, whereas IRS-2 has clear roles in cell migration and metastasis. In this review we will discuss the roles of IRSs in mammary gland development and breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IRS:

Insulin receptor substrate

IGF-I:

Insulin-like growth factor I

IGF-IR:

Insulin-like growth factor I receptor

IR:

Insulin receptor

PH:

Plextrin homology

PTB:

Phosphotyrosine binding

SH2:

Src-homology 2

ER:

Estrogen receptor

ERE:

Estrogen-responsive element

TEB:

Terminal end bud

MEF:

Mouse embryo fibroblast

EGFR:

Epidermal growth factor receptor

References

  1. Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27(4):361–70.

    Article  PubMed  CAS  Google Scholar 

  2. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352(6330):73–7. doi:10.1038/352073a0.

    Article  PubMed  CAS  Google Scholar 

  3. Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG Jr, Glasheen E, et al. Role of IRS-2 in insulin and cytokine signalling. Nature. 1995;377(6545):173–7. doi:10.1038/377173a0.

    Article  PubMed  CAS  Google Scholar 

  4. Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, et al. The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry. 1997;36(27):8304–10. doi:10.1021/bi9630974.

    Article  PubMed  CAS  Google Scholar 

  5. Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem. 1997;272(34):21403–7. doi:10.1074/jbc.272.34.21403.

    Article  PubMed  CAS  Google Scholar 

  6. Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem. 2003;278(28):25323–30. doi:10.1074/jbc.M212430200.

    Article  PubMed  CAS  Google Scholar 

  7. Sun XJ, Miralpeix M, Myers MG Jr, Glasheen EM, Backer JM, Kahn CR, et al. Expression and function of IRS-1 in insulin signal transmission. J Biol Chem. 1992;267(31):22662–72.

    PubMed  CAS  Google Scholar 

  8. Myers MG Jr, White MF. The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains. Diabetes. 1993;42(5):643–50. doi:10.2337/diabetes.42.5.643.

    Article  PubMed  CAS  Google Scholar 

  9. Hadsell DL, Alexeenko T, Klemintidis Y, Torres D, Lee AV. Inability of overexpressed des(1–3)human insulin-like growth factor I (IGF-I) to inhibit forced mammary gland involution is associated with decreased expression of IGF signaling molecules. Endocrinology. 2001;142(4):1479–88. doi:10.1210/en.142.4.1479.

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Sallinen K, Anttila L, Makinen M, Luo C, Pollanen P, et al. Expression of insulin-receptor substrate-1 and -2 in ovaries from women with insulin resistance and from controls. Fertil Steril. 2000;74(3):564–72. doi:10.1016/S0015-0282(00)00688-9.

    Article  PubMed  CAS  Google Scholar 

  11. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96. doi:10.1038/nrm1837.

    Article  PubMed  CAS  Google Scholar 

  12. White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–22.

    PubMed  CAS  Google Scholar 

  13. Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans. 2005;33(Pt 2):354–7. doi:10.1042/BST0330354.

    PubMed  CAS  Google Scholar 

  14. He W, Craparo A, Zhu Y, O’Neill TJ, Wang LM, Pierce JH, et al. Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem. 1996;271(20):11641–5. doi:10.1074/jbc.271.20.11641.

    Article  PubMed  CAS  Google Scholar 

  15. Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem. 1996;271(11):5980–3. doi:10.1074/jbc.271.11.5980.

    Article  PubMed  CAS  Google Scholar 

  16. Myers M, White MF. The new element of insulin signalling. Diabetes. 1993;42:643–50. doi:10.2337/diabetes.42.5.643 (May).

    Article  PubMed  CAS  Google Scholar 

  17. Kuhne MR, Pawson T, Lienhard GE, Feng GS. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem. 1993;268(16):11479–81.

    PubMed  CAS  Google Scholar 

  18. Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG Jr, et al. Nck associates with the SH2 domain-docking protein IRS-1 in insulin- stimulated cells. Proc Natl Acad Sci U S A. 1993;90(24):11713–7. doi:10.1073/pnas.90.24.11713.

    Article  PubMed  CAS  Google Scholar 

  19. Amoui M, Craddock BP, Miller WT. Differential phosphorylation of IRS-1 by insulin and insulin-like growth factor I receptors in Chinese hamster ovary cells. J Endocrinol. 2001;171(1):153–62. doi:10.1677/joe.0.1710153.

    Article  PubMed  CAS  Google Scholar 

  20. Myers MG Jr, Sun XJ, Cheatham B, Jachna BR, Glasheen EM, Backer JM, et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology. 1993;132(4):1421–30. doi:10.1210/en.132.4.1421.

    Article  PubMed  CAS  Google Scholar 

  21. Ridderstrale M, Degerman E, Tornqvist H. Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem. 1995;270(8):3471–4. doi:10.1074/jbc.270.8.3471.

    Article  PubMed  CAS  Google Scholar 

  22. Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol Scand. 2005;183(1):3–12. doi:10.1111/j.1365-201X.2004.01382.x.

    Article  PubMed  CAS  Google Scholar 

  23. Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998;333(Pt 3):471–90.

    PubMed  CAS  Google Scholar 

  24. Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007;6(6):705–13.

    PubMed  CAS  Google Scholar 

  25. Surmacz E. Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia. 2000;5(1):95–105. doi:10.1023/A:1009523501499.

    Article  PubMed  CAS  Google Scholar 

  26. Platanias LC, Fish EN. Signaling pathways activated by interferons. Exp Hematol. 1999;27(11):1583–92. doi:10.1016/S0301-472X(99)00109-5.

    Article  PubMed  CAS  Google Scholar 

  27. White MF, Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998;228:179–208.

    PubMed  CAS  Google Scholar 

  28. Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, et al. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3- kinase activation via JAK2 kinase. J Biol Chem. 1998;273(25):15719–26. doi:10.1074/jbc.273.25.15719.

    Article  PubMed  CAS  Google Scholar 

  29. Burfoot MS, Rogers NC, Watling D, Smith JM, Pons S, Paonessaw G, et al. Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem. 1997;272(39):24183–90. doi:10.1074/jbc.272.39.24183.

    Article  PubMed  CAS  Google Scholar 

  30. Morelli C, Garofalo C, Sisci D, del Rincon S, Cascio S, Tu X, et al. Nuclear insulin receptor substrate 1 interacts with estrogen receptor alpha at ERE promoters. Oncogene. 2004;23(45):7517–26. doi:10.1038/sj.onc.1208014.

    Article  PubMed  CAS  Google Scholar 

  31. Sisci D, Morelli C, Cascio S, Lanzino M, Garofalo C, Reiss K, et al. The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure–function relationships. Ann Oncol. 2007;18(Suppl 6):vi81–5. doi:10.1093/annonc/mdm232.

    Article  PubMed  Google Scholar 

  32. Prisco M, Santini F, Baffa R, Liu M, Drakas R, Wu A, et al. Nuclear translocation of insulin receptor substrate-1 by the simian virus 40 T antigen and the activated type 1 insulin-like growth factor receptor. J Biol Chem. 2002;277(35):32078–85. doi:10.1074/jbc.M204658200.

    Article  PubMed  CAS  Google Scholar 

  33. Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem. 2005;280(33):29912–20. doi:10.1074/jbc.M504516200.

    Article  PubMed  CAS  Google Scholar 

  34. Wu A, Chen J, Baserga R. Nuclear insulin receptor substrate-1 activates promoters of cell cycle progression genes. Oncogene. 2008;27(3):397–403. doi:10.1038/sj.onc.1210636.

    Article  PubMed  CAS  Google Scholar 

  35. Trojanek J, Ho T, Croul S, Wang JY, Chintapalli J, Koptyra M, et al. IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer. 2006;119(3):539–48. doi:10.1002/ijc.21828.

    Article  PubMed  CAS  Google Scholar 

  36. Trojanek J, Ho T, Del Valle L, Nowicki M, Wang JY, Lassak A, et al. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol. 2003;23(21):7510–24. doi:10.1128/MCB.23.21.7510-7524.2003.

    Article  PubMed  CAS  Google Scholar 

  37. Tu X, Batta P, Innocent N, Prisco M, Casaburi I, Belletti B, et al. Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J Biol Chem. 2002;277(46):44357–65. doi:10.1074/jbc.M208001200.

    Article  PubMed  CAS  Google Scholar 

  38. Sun H, Tu X, Prisco M, Wu A, Casiburi I, Baserga R. Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol. 2003;17(3):472–86. doi:10.1210/me.2002-0276.

    Article  PubMed  CAS  Google Scholar 

  39. Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, et al. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology. 2003;144(6):2683–94. doi:10.1210/en.2002-221103.

    Article  PubMed  CAS  Google Scholar 

  40. Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222(2):192–205. doi:10.1002/dvdy.1179.

    Article  PubMed  CAS  Google Scholar 

  41. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ. 1996;7(7):945–52.

    PubMed  CAS  Google Scholar 

  42. Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80(2):137–48. doi:10.1016/S0960-0760(01)00182-0.

    Article  PubMed  CAS  Google Scholar 

  43. Zeps N, Bentel JM, Papadimitriou JM, D’Antuono MF, Dawkins HJ. Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation. 1998;62(5):221–6. doi:10.1046/j.1432-0436.1998.6250221.x.

    Article  PubMed  CAS  Google Scholar 

  44. Lee AV, Taylor ST, Greenall J, Mills JD, Tonge DW, Zhang P, et al. Rapid induction of IGF-IR signaling in normal and tumor tissue following intravenous injection of IGF-I in mice. Horm Metab Res. 2003;35(11–12):651–5.

    PubMed  CAS  Google Scholar 

  45. Hadsell DL, Olea W, Lawrence N, George J, Torres D, Kadowaki T, et al. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J Endocrinol. 2007;194(2):327–36. doi:10.1677/JOE-07-0160.

    Article  PubMed  CAS  Google Scholar 

  46. Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales-Rimbau M, Hadsell DL, Lee AV, et al. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol. 2007;309(1):137–49. doi:10.1016/j.ydbio.2007.07.002.

    Article  PubMed  CAS  Google Scholar 

  47. D’Ambrosio C, Keller SR, Morrione A, Lienhard GE, Baserga R, Surmacz E. Transforming potential of the insulin receptor substrate 1. Cell Growth Differ. 1995;6(5):557–62.

    PubMed  CAS  Google Scholar 

  48. Ito T, Sasaki Y, Wands JR. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol. 1996;16(3):943–51.

    PubMed  CAS  Google Scholar 

  49. Tanaka S, Ito T, Wands JR. Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules. J Biol Chem. 1996;271(24):14610–6. doi:10.1074/jbc.271.24.14610.

    Article  PubMed  CAS  Google Scholar 

  50. Cristofanelli B, Valentinis B, Soddu S, Rizzo MG, Marchetti A, Bossi G, et al. Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene. 2000;19(29):3245–55. doi:10.1038/sj.onc.1203664.

    Article  PubMed  CAS  Google Scholar 

  51. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30(3):256–68. doi:10.1016/S1046-2023(03)00032-X.

    Article  PubMed  CAS  Google Scholar 

  52. Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol. 2006;26(24):9302–14. doi:10.1128/MCB.00260-06.

    Article  PubMed  CAS  Google Scholar 

  53. Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol. 2006;8(11):1235–45. doi:10.1038/ncb1485.

    Article  PubMed  CAS  Google Scholar 

  54. Ma Z, Gibson SL, Byrne MA, Zhang J, White MF, Shaw LM. Suppression of insulin receptor substrate-1 (lrs-1) promotes mammary tumor metastasis. Mol Cell Biol. 2006;26:9338–51.

    Article  PubMed  CAS  Google Scholar 

  55. Nagle JA, Ma Z, Byrne MA, White MF, Shaw LM. Involvement of insulin receptor substrate 2 in mammary tumor metastasis. Mol Cell Biol. 2004;24(22):9726–35. doi:10.1128/MCB.24.22.9726-9735.2004.

    Article  PubMed  CAS  Google Scholar 

  56. Gibson SL, Ma Z, Shaw LM. Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle. 2007;6(6):631–7.

    PubMed  CAS  Google Scholar 

  57. Nolan MK, Jankowska L, Prisco M, Xu S, Guvakova MA, Surmacz E. Differential roles of IRS-1 and SHC signaling pathways in breast cancer cells. Int J Cancer. 1997;72(5):828–34. doi:10.1002/(SICI)1097-0215(19970904)72:5<828::AID-IJC20>3.0.CO;2-3.

    Article  PubMed  CAS  Google Scholar 

  58. Surmacz E, Burgard JL. Overexpression of IRS-1 in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin Cancer Res. 1995;1:1429–36.

    PubMed  CAS  Google Scholar 

  59. Dalmizrak O, Wu A, Chen J, Sun H, Utama FE, Zambelli D, et al. Insulin receptor substrate-1 regulates the transformed phenotype of BT-20 human mammary cancer cells. Cancer Res. 2007;67(5):2124–30. doi:10.1158/0008-5472.CAN-06-3954.

    Article  PubMed  CAS  Google Scholar 

  60. Lanzino M, Garofalo C, Morelli C, Le Pera M, Casaburi I, McPhaul MJ, et al. Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat. 2008 doi:10.1007/s10549-008-0079-1.

  61. Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8. doi:10.1038/sj.bjc.6603354.

    Article  PubMed  CAS  Google Scholar 

  62. Jackson JG, Zhang X, Yoneda T, Yee D. Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene. 2001;20(50):7318–25. doi:10.1038/sj.onc.1204920.

    Article  PubMed  CAS  Google Scholar 

  63. Molloy CA, May FE, Westley BR. Insulin receptor substrate-1 expression is regulated by estrogen in the MCF-7 human breast cancer cell line. J Biol Chem. 2000;275(17):12565–71. doi:10.1074/jbc.275.17.12565.

    Article  PubMed  CAS  Google Scholar 

  64. Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, et al. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999;13(5):787–96. doi:10.1210/me.13.5.787.

    Article  PubMed  CAS  Google Scholar 

  65. Bernard L, Legay C, Adriaenssens E, Mougel A, Ricort JM. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: a crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells. Biochem Biophys Res Commun. 2006;350(4):916–21. doi:10.1016/j.bbrc.2006.09.116.

    Article  PubMed  CAS  Google Scholar 

  66. Cesarone G, Garofalo C, Abrams MT, Igoucheva O, Alexeev V, Yoon K, et al. RNAi-mediated silencing of insulin receptor substrate 1 (IRS-1) enhances tamoxifen-induced cell death in MCF-7 breast cancer cells. J Cell Biochem. 2006;98(2):440–50. doi:10.1002/jcb.20817.

    Article  PubMed  CAS  Google Scholar 

  67. Oesterreich S, Zhang P, Guler RL, Sun X, Curran E, Welshons WV, et al. Re-expression of estrogen receptor α in estrogen receptror α-negative MCF-7 cells results in restoration of estrogen and IGF-mediated signaling and proliferation. Cancer Res. 2001;61(15):5771–7.

    PubMed  CAS  Google Scholar 

  68. Cui X, Lazard Z, Zhang P, Hopp TA, Lee AV. Progesterone crosstalks with insulin-like growth factor signaling in breast cancer cells via induction of insulin receptor substrate-2. Oncogene. 2003;22(44):6937–41. doi:10.1038/sj.onc.1206803.

    Article  PubMed  CAS  Google Scholar 

  69. Ibrahim YH, Byron SA, Cui X, Lee AV, Yee D. Progesterone receptor-B regulation of insulin-like growth factor-stimulated cell migration in breast cancer cells via insulin receptor substrate-2. Mol Cancer Res. 2008;6(9):1491–8. doi:10.1158/1541-7786.MCR-07-2173.

    Article  PubMed  CAS  Google Scholar 

  70. Knowlden JM, Jones HE, Barrow D, Gee JM, Nicholson RI, Hutcheson IR. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat. 2008;111(1):79–91. doi:10.1007/s10549-007-9763-9.

    Article  PubMed  CAS  Google Scholar 

  71. Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV. Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res. 2006;66(10):5304–13. doi:10.1158/0008-5472.CAN-05-2858.

    Article  PubMed  CAS  Google Scholar 

  72. Schnarr B, Strunz K, Ohsam J, Benner A, Wacker J, Mayer D. Down-regulation of insulin-like growth factor-I receptor and insulin receptor substrate-1 expression in advanced human breast cancer. Int J Cancer. 2000;89(6):506–13. doi:10.1002/1097-0215(20001120)89:6<506::AID-IJC7>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  73. Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng CN, Lee AV, et al. Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res. 1997;3:103–9.

    PubMed  CAS  Google Scholar 

  74. Koda M, Sulkowska M, Kanczuga-Koda L, Sulkowski S. Expression of insulin receptor substrate 1 in primary breast cancer and lymph node metastases. J Clin Pathol. 2005;58(6):645–9. doi:10.1136/jcp.2004.022590.

    Article  PubMed  CAS  Google Scholar 

  75. Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, et al. Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol. 2006;60:633–41.

    Article  PubMed  Google Scholar 

  76. McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem. 2005;280(8):6441–6. doi:10.1074/jbc.M412300200.

    Article  PubMed  CAS  Google Scholar 

  77. Slattery ML, Sweeney C, Wolff R, Herrick J, Baumgartner K, Giuliano A, et al. Genetic variation in IGF1, IGFBP3, IRS1, IRS2 and risk of breast cancer in women living in Southwestern United States. Breast Cancer Res Treat. 2007;104(2):197–209. doi:10.1007/s10549-006-9403-9.

    Article  PubMed  CAS  Google Scholar 

  78. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808. doi:10.1016/S1470-2045(05)70390-9.

    Article  PubMed  Google Scholar 

  79. Heine JJ, Malhotra P. Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 2. Serial breast tissue change and related temporal influences. Acad Radiol. 2002;9(3):317–35. doi:10.1016/S1076-6332(03)80374-4.

    Article  PubMed  Google Scholar 

  80. Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94. doi:10.1056/NEJMoa013390.

    Article  PubMed  Google Scholar 

  81. Diorio C, Brisson J, Berube S, Pollak M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol Biomark Prev. 2008;17(4):880–8. doi:10.1158/1055-9965.EPI-07-2500.

    Article  CAS  Google Scholar 

  82. Fan J, McKean-Cowdin R, Bernstein L, Stanczyk FZ, Li AX, Ballard-Barbash R, et al. An association between a common variant (G972R) in the IRS-1 gene and sex hormone levels in post-menopausal breast cancer survivors. Breast Cancer Res Treat. 2006;99(3):323–31. doi:10.1007/s10549-006-9211-2.

    Article  PubMed  CAS  Google Scholar 

  83. Feigelson HS, Teras LR, Diver WR, Tang W, Patel AV, Stevens VL, et al. Genetic variation in candidate obesity genes ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1 and risk for breast cancer in the Cancer Prevention Study II. Breast Cancer Res. 2008;10(4):R57. doi:10.1186/bcr2114.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert K. Dearth for reading the manuscript and giving useful comments. Dr Bonita Tak-Yee Chan is supported by the Diana Helis Henry Medical Research Foundation. Dr Adrian V. Lee’s research is supported in part by grant R01CA94118 from the NIH/NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian V. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, B.TY., Lee, A.V. Insulin Receptor Substrates (IRSs) and Breast Tumorigenesis. J Mammary Gland Biol Neoplasia 13, 415–422 (2008). https://doi.org/10.1007/s10911-008-9101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9101-9

Keywords

Navigation