Skip to main content
Log in

Molecular Determinants of Milk Lipid Secretion

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary epithelial cells secrete lipids by an envelopment process that produces lipid droplets coated by membranes derived from the plasma membrane and possibly secretory vesicles. This secretion process, which resembles viral budding, is hypothesized to be mediated by specific interactions between molecules on the surface of intracellular lipids and membrane elements of the cell. Multiple lines of evidence indicate that milk lipid secretion occurs through a tripartite complex between the integral transmembrane protein, butyrophilin (BTN); the soluble metabolic enzyme, xanthine oxidoreductase (XOR); and the lipid droplet surface protein, adipophilin (ADPH). However, topological evidence from freeze-fracture replica immunolabelling (FRIL) challenge this model and suggests that milk lipid secretion is mediated by butyrophilin alone. Advances in our understanding of the molecular, structural, and functional properties of these proteins now make it possible to understand the physiological functions of each of these molecules in detail and to identify the specific molecular determinants that mediate milk lipid secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, Heid H, Troyer D, Severs NJ. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci USA 2006;103:10385–10390.

    Article  PubMed  CAS  Google Scholar 

  2. McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 2006;11:249–268.

    Article  PubMed  Google Scholar 

  3. Bargmann W, Knoop A. Morphology of lactation; light & electro-microscopic studies on the mammary glands of rats. Z Zellforsch Mikrosk Anat 1959;49:344–388.

    Article  PubMed  CAS  Google Scholar 

  4. Wooding FB. Formation of the milk fat globule membrane without participation of the plasmalemma. J Cell Sci 1973;13:221–235.

    PubMed  CAS  Google Scholar 

  5. Wooding FBP. Comparative mammary fine structure. In: Peaker M, editor. Comparative Aspects of Lactation. London: Academic; 1977. p. 1–41.

    Google Scholar 

  6. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001;40:325–438.

    Article  PubMed  CAS  Google Scholar 

  7. Brasaemle DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007.

  8. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277:44507–44512.

    Article  PubMed  CAS  Google Scholar 

  9. Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10:51–58.

    Article  PubMed  CAS  Google Scholar 

  10. Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000;21:3470–3482.

    Article  PubMed  CAS  Google Scholar 

  11. Stein O, Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol 1967;33:319–339.

    Article  PubMed  CAS  Google Scholar 

  12. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 1980;87:180–196.

    Article  PubMed  CAS  Google Scholar 

  13. Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 1995;36:1211–1226.

    PubMed  CAS  Google Scholar 

  14. Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006;119:4215–4224.

    Article  PubMed  CAS  Google Scholar 

  15. Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001;152:1057–1070.

    Article  PubMed  CAS  Google Scholar 

  16. Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999;181:6441–6448.

    PubMed  CAS  Google Scholar 

  17. Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004;279:46835–46842.

    Article  PubMed  CAS  Google Scholar 

  18. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004;279:3787–3792.

    Article  PubMed  CAS  Google Scholar 

  19. Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic; 1974. p. 3–95.

    Google Scholar 

  20. Wooding FB. The mechanism of secretion of the milk fat globule. J Cell Sci 1971;9:805–821.

    PubMed  CAS  Google Scholar 

  21. Jarasch ED, Bruder G, Keenan TW, Franke WW. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol 1977;73:223–241.

    Article  PubMed  CAS  Google Scholar 

  22. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 1999;144:1135–1149.

    Article  PubMed  CAS  Google Scholar 

  23. Mather IH, Jack LJ, Madara PJ, Johnson VG. The distribution of MUC1, an apical membrane glycoprotein, in mammary epithelial cells at the resolution of the electron microscope: implications for the mechanism of milk secretion. Cell Tissue Res 2001;304:91–101.

    Article  PubMed  CAS  Google Scholar 

  24. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998;3:259–273.

    Article  PubMed  CAS  Google Scholar 

  25. Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001;12:741–749.

    Article  PubMed  CAS  Google Scholar 

  26. Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 1997;38:2249–2263.

    PubMed  CAS  Google Scholar 

  27. Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294:309–321.

    Article  PubMed  CAS  Google Scholar 

  28. Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res 2007;48:1463–1475.

    Article  PubMed  CAS  Google Scholar 

  29. Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999;274:16825–16830.

    Article  PubMed  CAS  Google Scholar 

  30. Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 2002;283:E775–783.

    PubMed  CAS  Google Scholar 

  31. McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003;44:668–673.

    Article  PubMed  CAS  Google Scholar 

  32. Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF, Girod A, McLauchlan J. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 2003;278:15998–16007.

    Article  PubMed  CAS  Google Scholar 

  33. Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA. Adipocyte differentiation-related protein reduces lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 2007 (In Press).

  34. Banghart LR, Chamberlain CW, Velarde J, Korobko IV, Ogg SL, Jack LJ, Vakharia VN, Mather IH. Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J Biol Chem 1998;273:4171–4179.

    Article  PubMed  CAS  Google Scholar 

  35. McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol 2002;545:567–579.

    Article  PubMed  CAS  Google Scholar 

  36. Franke WW, Heid HW, Grund C, Winter S, Freudenstein C, Schmid E, Jarasch ED, Keenan TW. Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells. J Cell Biol 1981;89:485–494.

    Article  PubMed  CAS  Google Scholar 

  37. Stryer L. Biochemistry, 3rd ed. New York: W.H. Freeman; 1988.

    Google Scholar 

  38. Bray RC. Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer PD, editor. The Enzymes. New York: Academic; 1975. p. 299–419.

    Google Scholar 

  39. McManaman JL, Neville MC, Wright RM. Mouse mammary gland xanthine oxidoreductase: purification, characterization, and regulation. Arch Biochem Biophys 1999;371:308–316.

    Article  PubMed  CAS  Google Scholar 

  40. Kurosaki M, Zanotta S, Calzi ML, Garattini E, Terao M. Expression of xanthine oxidoreductase in mouse mammary epithelium during pregnancy and lactation: Regulation of gene expression by glucocorticoids and prolactin. Biochem J 1996;319:801–810.

    PubMed  CAS  Google Scholar 

  41. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 2002;16:3223–3235.

    Article  PubMed  CAS  Google Scholar 

  42. Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci USA 2004;101:10084–10089.

    Article  PubMed  CAS  Google Scholar 

  43. McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol 2004;554:263–279.

    PubMed  CAS  Google Scholar 

  44. Russell TD, Palmer CA, Orlicky DJ, Bales ES, Chang BH, Chan L, McManaman JL. Mammary glands of adipophilin-null mice produce an N-terminally truncated form of adipophilin that mediates milk lipid formation and secretion. J Lipid Res 2007;(In Press).

  45. Valivullah HM, Keenan TW. Butyrophilin of milk lipid globule membrane contains N-linked carbohydrates and cross-links with xanthine oxidase. Int J Biochem 1989;21:103–107.

    Article  PubMed  CAS  Google Scholar 

  46. Mondy BL, Keenan TW. Butyrophilin and xanthine oxidase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protooplasma 1993;177:32–36.

    Article  CAS  Google Scholar 

  47. Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995;1245:285–292.

    PubMed  Google Scholar 

  48. Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J 1996;320(Pt 3):1025–1030.

    PubMed  CAS  Google Scholar 

  49. Waud WR, Rajagopalan KV. The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Arch Biochem Biophys 1976;172:365–379.

    Article  PubMed  CAS  Google Scholar 

  50. Massey V, Schopfer LM, Nishino T, Nishino T. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J Biol Chem 1989;264:10567–10573.

    PubMed  CAS  Google Scholar 

  51. McManaman JL, Bain DL. Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 2002;277:21261–21268.

    Article  PubMed  CAS  Google Scholar 

  52. Frederiks WM, Marx F. A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique. J Histochem Cytochem 1993;41:667–670.

    PubMed  CAS  Google Scholar 

  53. Clare DA, Blakistone BA, Swaisgood HE, Horton HR. Sulfhydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase. Arch Biochem Biophys 1981;211:44–47.

    Article  PubMed  CAS  Google Scholar 

  54. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002;277:32253–32257.

    Article  PubMed  CAS  Google Scholar 

  55. Nielsen RL, Andersen MH, Mabhout P, Berglund L, Petersen TE, Rasmussen JT. Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. J Dairy Sci 1999;82:2543–2549.

    Article  PubMed  CAS  Google Scholar 

  56. Garcia A, Subramanian V, Sekowski A, Bhattacharyya S, Love MW, Brasaemle DL. The amino and carboxyl termini of perilipin a facilitate the storage of triacylglycerols. J Biol Chem 2004;279:8409–8416.

    Article  PubMed  CAS  Google Scholar 

  57. Garcia A, Sekowski A, Subramanian V, Brasaemle DL. The central domain is required to target and anchor perilipin A to lipid droplets. J Biol Chem 2003;278:625–635.

    Article  PubMed  CAS  Google Scholar 

  58. Subramanian V, Garcia A, Sekowski A, Brasaemle DL. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J Lipid Res 2004;45:1983–1991.

    Article  PubMed  CAS  Google Scholar 

  59. Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004;12:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  60. Russell T, Fischer A, Beeman N, Freed E, Neville MC, Schaack J. Transduction of the mouse mammary epithelium with adenoviral vectors in vivo. J Virol 2003;77:5801–5809.

    Article  PubMed  CAS  Google Scholar 

  61. Garoff H, Hewson R, Opstelten DJ. Virus maturation by budding. Microbiol Mol Biol Rev 1998;62:1171–1190.

    PubMed  CAS  Google Scholar 

  62. Hurley JH, Emr SD. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 2006;35:277–298.

    Article  PubMed  CAS  Google Scholar 

  63. Morita E, Sundquist WI. Retrovirus budding. Annu Rev Cell Dev Biol 2004;20:395–425.

    Article  PubMed  CAS  Google Scholar 

  64. Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006;103:14947–14952.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JLM was supported by NIH grants P01 HD038129 and R01 HD045965. TDR was supported by a UNCF-Merck Graduate Science Initiative fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. McManaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManaman, J.L., Russell, T.D., Schaack, J. et al. Molecular Determinants of Milk Lipid Secretion. J Mammary Gland Biol Neoplasia 12, 259–268 (2007). https://doi.org/10.1007/s10911-007-9053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9053-5

Keywords

Navigation