Skip to main content

Advertisement

Log in

Secretion and Fluid Transport Mechanisms in the Mammary Gland: Comparisons with the Exocrine Pancreas and the Salivary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Milk is a complex fluid composed of proteins, sugars, lipids and minerals, in addition to a wide variety of bioactive molecules including vitamins, trace elements and growth factors. The composition of these components reflects the integrated activities of distinct synthetic, secretion and transport processes found in mammary epithelial cells, and mirrors the differing nutritional and developmental requirements of mammalian neonates. Five general pathways have been described for secretion of milk components. With the exception of lipids, which are secreted a unique pathway, milk components are thought to be secreted by adaptations of pathways found in other secretory organs. However little is known about the molecular and cellular mechanisms that constitute these pathways or the physiological mechanisms by which they are regulated. Comparisons of current secretion and transport models in the mammary gland, exocrine pancreas and salivary gland indicate that significant differences exist between the mammary gland and other exocrine organs in how proteins and lipids are packaged and secreted, and how fluid is transported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Palade G. Intracellular aspects of the process of protein synthesis. Science 1975;189:347–58.

    CAS  PubMed  Google Scholar 

  2. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998;3(3):259–73.

    CAS  PubMed  Google Scholar 

  3. Miles T, Nauntofte B, Svensson P. Clinical Oral Physiology. Quintessence Publishing Co. Ltd; 2004.

  4. Murakami M, Shachar-Hill B, Steward MC, Hill AE. The paracellular component of water flow in the rat submandibular salivary gland. J Physiol (Lond.) 2001;537:899–906.

    CAS  Google Scholar 

  5. Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 2005;67:445–69.

    CAS  PubMed  Google Scholar 

  6. Verkman AS. Physiological importance of aquaporin water channels. Ann Med 2002;34:192–200.

    CAS  PubMed  Google Scholar 

  7. Ishikawa Y. Aquaporin water channel in salivary glands. Jpn J Pharmacol 2000;83:95–101.

    CAS  PubMed  Google Scholar 

  8. Jamieson JD, Palade GE. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol 1967;34:597–615.

    CAS  PubMed  Google Scholar 

  9. Farquhar MG, Palade GE. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J Cell Biol 1981;91(3Pt 2):77s–103s.

    CAS  PubMed  Google Scholar 

  10. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE. Predicting function from structure: 3D structure studies of the mammalian Gogli complex. Traffic 2004;5:338–45.

    CAS  PubMed  Google Scholar 

  11. Marsh BJ, Volkmann N, McIntosh JR, Howell KE. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci U S A 2004;101(15):5565–70.

    CAS  PubMed  Google Scholar 

  12. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 2002;13(8):2810–25.

    CAS  PubMed  Google Scholar 

  13. Marsh BJ, Mastronarde DN, McIntosh JR, Howell KE. Structural evidence for multiple transport mechanisms through the Golgi in the pancreatic beta-cell line, HIT-T15. Biochem Soc Trans 2001;29(Pt 4):461–7.

    CAS  PubMed  Google Scholar 

  14. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 1999;144(6):1135–49.

    CAS  PubMed  Google Scholar 

  15. Burgess TL, Kelly RB. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 1987;3:243–93.

    CAS  PubMed  Google Scholar 

  16. Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. J Cell Biol 1992;117:269–78.

    Google Scholar 

  17. Stinchcombe JC, Griffiths GM. Regulated secretion from hemopoietic cells. J Cell Biol 1999;147(1):1–6.

    CAS  PubMed  Google Scholar 

  18. Aoki T, Yamada N, Tomita I, Kako Y, Imamura T. Caseins are cross-linked through their ester phosphate groups by colloidal calcium phosphate. Biochim Biophys Acta 1987;911(2):238–43.

    CAS  PubMed  Google Scholar 

  19. Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L. Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of the rat. Anat Rec 1993;235(3):363–73.

    CAS  PubMed  Google Scholar 

  20. Muallem S, Kwiatkowska K, Xu X, Yin HL. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 1995;128(4):589–98.

    CAS  PubMed  Google Scholar 

  21. Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell 2004;116(2):153–66.

    CAS  PubMed  Google Scholar 

  22. Burgoyne RD, Morgan A. Secretory granule exocytosis. Physiol Rev 2003;83(2):581–632.

    CAS  PubMed  Google Scholar 

  23. Wu CC, Yates JR, 3rd, Neville MC, Howell KE. Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic 2000;1(10):769–82.

    CAS  PubMed  Google Scholar 

  24. Huang AY, Castle AM, Hinton BT, Castle JD. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J Biol Chem 2001;276(25):22296–306.

    CAS  PubMed  Google Scholar 

  25. Adler G, Beglinger C, Braun U, Reinshagen M, Koop I, Schafmayer A, et al. Interaction of the cholinergic system and cholecystokinin in the regulation of endogenous and exogenous stimulation of pancreatic secretion in humans. Gastroenterology 1991;100:537–43.

    CAS  PubMed  Google Scholar 

  26. Soudah HC, Lu Y, Hasler WL, Owyang C. Cholecystokinin at physiological levels evokes pancreatic enzyme secretion via a cholinergic pathway. Am J Physiol 1992;263:G102–7.

    CAS  PubMed  Google Scholar 

  27. Yule DI, Essington TE, Williams JA. Pilocarpine and carbachol exhibit markedly different patterns of Ca2+ signaling in rat pancreatic acinar cells. Am J Physiol 1993;264:G786–91.

    CAS  PubMed  Google Scholar 

  28. Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca from single isolated pancreatic zymogen granules. Cell 1996;84:473–80.

    CAS  PubMed  Google Scholar 

  29. Leite MF, Burgstahler AD, Nathanson MH. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini. Gastroenterology 2002;122(2):415–27.

    CAS  PubMed  Google Scholar 

  30. Johnson PR, Dolman NJ, Pope M, Vaillant C, Petersen OH, Tepikin AV, et al. Non-uniform distribution of mitochondria in pancreatic acinar cells. Cell Tissue Res 2003;313(1):37–45.

    PubMed  Google Scholar 

  31. von Zastrow M, Castle J. Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules. J Cell Biol 1987;105(6):2675–84.

    Google Scholar 

  32. Castle D, Castle A. Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med 1998;9:4–22.

    CAS  PubMed  Google Scholar 

  33. Proctor GB. Muscarinic receptors and salivary secretion. J Appl Physiol 2006;100:1103–4.

    CAS  PubMed  Google Scholar 

  34. Gorr S-U, Venkatesh SG, Darling DS. Parotid Secretory Granules: Crossroads of secretory pathways and protein storage. J Dent Res 2005;84:500–509.

    CAS  PubMed  Google Scholar 

  35. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, et al. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol (Lond.) 2004;558(2):561–75.

    CAS  Google Scholar 

  36. Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol 2004;66(2):260–67.

    CAS  PubMed  Google Scholar 

  37. Begenisich T, Nakamoto T, Ovitt CE, Nehrke K, Brugnara C, Alper SL, et al. Physiological roles of the intermediate conductance, Ca2+-activated potassium channel Kcnn4. J Biol Chem 2004;279(46):47681–7.

    CAS  PubMed  Google Scholar 

  38. Romanenko V, Nakamoto T, Srivastava A, Melvin JE, Begenisich T. Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J Biol Chem 2006;281:27964–72.

    CAS  PubMed  Google Scholar 

  39. Arreola J, Begenisich T, Nehrke K, Nguyen H-V, Park K, Richardson L, et al. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl channel gene. J Physiol (Lond.) 2002;545(1):207–16.

    CAS  Google Scholar 

  40. Melvin JE, Turner RJ. Cl fluxes related to fluid secretion by the rat parotid: involvement of Cl()–HCO3− exchange. Am J Physiol 1992;262(3 Pt 1):G393–8.

    CAS  PubMed  Google Scholar 

  41. Park K, Evans RL, Watson GE, Nehrke K, Richardson L, Bell SM, et al. Defective fluid secretion and NaCl absorption in the parotid glands of Na+/H+ exchanger-deficient mice. J Biol Chem 2001;276(29):27042–50.

    CAS  PubMed  Google Scholar 

  42. Evans RL, Park K, Turner RJ, Watson GE, Nguyen H-V, Dennett MR, et al. Severe impairment of salivation in Na+/K+/2Cl cotransporter (NKCC1)-deficient mice. J Biol Chem 2000;275(35):26720–6.

    CAS  PubMed  Google Scholar 

  43. Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. GenomeBiology.com 2006;7:206.

    PubMed  Google Scholar 

  44. Ishikawa Y, Cho G, Zhenfang Y, Mariusz T, Skowronski Y, Ishida H. Water channels and zymogen granules in salivary glands. J Pharmacol Sci 2006;100:495–512.

    CAS  PubMed  Google Scholar 

  45. Murakami M, Murdiastuti K, Hosoi K, Hill AE. AQP and control of fluid transport in a salivary gland. J Membr Biol 2006;210:91–103.

    CAS  PubMed  Google Scholar 

  46. Verkman AS. Physiological importance of aquaporins: lessons from knockout mice. Curr Opin Nephrol Hypertens 2000;9:517–22.

    CAS  PubMed  Google Scholar 

  47. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 1999;274(29): 20071–4.

    CAS  PubMed  Google Scholar 

  48. Krane CM, Melvin JE, Nguyen H-V, Richardson L, Towne JE, Doetschman T, et al. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 2001;276(26):23413–20.

    CAS  PubMed  Google Scholar 

  49. Ishikawa Y, Yuan Z, Inoue N, Skowronski MT, Nakae Y, Shono M, et al. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am J Physiol, Cell Physiol 2005;289(5):C1303–11.

    CAS  PubMed  Google Scholar 

  50. Burghardt B, Nielsen S, Steward MC. The role of aquaporin water channels in fluid secretion by the exocrine pancreas. J Membr Biol 2006;210:143–53.

    CAS  PubMed  Google Scholar 

  51. Delporte C, Steinfeld S. Distribution and roles of aquaporins in salivary glands. Biochim Biophys Acta, Biomembr 2006;1758:1061–70.

    CAS  Google Scholar 

  52. Ishikawa Y, Iida H, Ishida H. The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Mol Pharmacol 2002;61(6):1423–34.

    CAS  PubMed  Google Scholar 

  53. Ishikawa Y, Cho G, Yuan Z, Inoue N, Nakae Y. Aquaporin-5 water channel in lipid rafts of rat parotid glands. Biochim Biophys Acta, Biomembr 2006;1758:1053–60.

    CAS  Google Scholar 

  54. Marino CR, Matovcik LM, Gorelick FS, Cohn JA. Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J Clin Invest 1991;88:712–6.

    Article  CAS  PubMed  Google Scholar 

  55. Hurley PT, Ferguson CJ, Kwon TH, Andersen ML, Norman AG, Steward MC, et al. Expression and immunolocalization of aquaporin water channels in rat exocrine pancreas. Am J Physiol: Gastrointest Liver Physiol 2001;280(4):G701–9.

    CAS  Google Scholar 

  56. Yang B, Song Y, Zhao D, Verkman AS. Phenotype analysis of aquaporin-8 null mice. Am J Physiol, Cell Physiol 2005;288(5):C1161–70.

    CAS  PubMed  Google Scholar 

  57. Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 1994;265(5178):1585–7.

    CAS  PubMed  Google Scholar 

  58. Shennan DB, Peaker M. Transport of milk constituents by the mammary gland. Physiol Rev 2000;80(3):925–51.

    CAS  PubMed  Google Scholar 

  59. Stinnakre MG, Vilotte JL, Soulier S, Mercier JC. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci USA 1994;91(14):6544–8.

    CAS  PubMed  Google Scholar 

  60. Oftedal OT. Milk composition, milk yield and energy output at peak lactation: a comparative review. In: Peaker M, Vernon RG, Knight CH, editors. Physiological Strategies in Lactation. London: Academic; 1984. p. 33–85.

    Google Scholar 

  61. Matsuzaki T, Machida N, Tajika Y, Ablimit A, Suzuki T, Aoki T, et al. Expression and immunolocalization of water-channel aquaporins in the rat and mouse mammary gland. Histochem Cell Biol 2005;123(4–5):501–12.

    CAS  PubMed  Google Scholar 

  62. Hara M, Ma T, Verkman AS. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J Biol Chem 2002;277(48):46616–21.

    CAS  PubMed  Google Scholar 

  63. Ma T, Hara M, Sougrat R, Verbavatz JM, Verkman AS. Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. J Biol Chem 2002;277(19):17147–53.

    CAS  PubMed  Google Scholar 

  64. Bargmann W, Knoop A. [Morphology of lactation; light and electro-microscopic studies on the mammary glands of rats.]. Z Zellforsch Mikrosk Anat 1959;49(3):344–88.

    CAS  PubMed  Google Scholar 

  65. Wooding FB. Formation of the milk fat globule membrane without participation of the plasmalemma. J Cell Sci 1973;13(1):221–35.

    CAS  PubMed  Google Scholar 

  66. Mather IH, Jack LJ, Madara PJ, Johnson VG. The distribution of MUC1, an apical membrane glycoprotein, in mammary epithelial cells at the resolution of the electron microscope: implications for the mechanism of milk secretion. Cell Tissue Res 2001;304(1):91–101.

    CAS  PubMed  Google Scholar 

  67. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001;40(5):325–438.

    CAS  PubMed  Google Scholar 

  68. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277(46):44507–12.

    CAS  PubMed  Google Scholar 

  69. Zweytick D, Athenstaedt K, Daum G. Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 2000; 1469(2):101–20.

    CAS  PubMed  Google Scholar 

  70. Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10(1):51–8.

    CAS  PubMed  Google Scholar 

  71. Wu CC, Howell KE, Neville MC, Yates JR, 3rd, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000;21(16):3470–82.

    CAS  PubMed  Google Scholar 

  72. Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci 1999;24(3):109–15.

    CAS  PubMed  Google Scholar 

  73. Brown DA. Lipid droplets: proteins floating on a pool of fat. Curr Biol 2001;11(11):R446–9.

    CAS  PubMed  Google Scholar 

  74. Stein O, Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol 1967;33(2):319–39.

    CAS  PubMed  Google Scholar 

  75. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 1980;87(1):180–96.

    CAS  PubMed  Google Scholar 

  76. Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 1995;36(6):1211–26.

    CAS  PubMed  Google Scholar 

  77. Fernandez DE, Staehelin LA. Does gibberellic acid induce the transfer of lipase from protein bodies to lipid bodies in barley aleurone cells? Plant Physiol 1987;85(2):487–96.

    Article  CAS  PubMed  Google Scholar 

  78. Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001;152(5):1057–70.

    CAS  PubMed  Google Scholar 

  79. Stein O, Stein Y. Lipid synthesis, intracellular transport, and secretion. II. Electron microscopic radioautographic study of the mouse lactating mammary gland. J Cell Biol 1967;34(1):251–63.

    CAS  PubMed  Google Scholar 

  80. Keenan TW, Dylewski DP, Ghosal D, Keon BH. Milk lipid globule precursor release from endoplasmic reticulum reconstituted in a cell-free system. Eur J Cell Biol 1992;57(1):21–9.

    CAS  PubMed  Google Scholar 

  81. Marchesan D, Rutberg M, Andersson L, Asp L, Larsson T, Boren J, et al. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system. J Biol Chem 2003;278(29):27293–300.

    CAS  PubMed  Google Scholar 

  82. Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999;181(20):6441–8.

    CAS  PubMed  Google Scholar 

  83. Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004;279(45):46835–42.

    CAS  PubMed  Google Scholar 

  84. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004;279(5):3787–92.

    CAS  PubMed  Google Scholar 

  85. Ghosal D, Shappell NW, Keenan TW. Endoplasmic reticulum lumenal proteins of rat mammary gland. Potential involvement in lipid droplet assembly during lactation. Biochim Biophys Acta 1994;1200(2):175–81.

    CAS  PubMed  Google Scholar 

  86. Prattes S, Horl G, Hammer A, Blaschitz A, Graier WF, Sattler W, et al. Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci 2000;113(Pt 17):2977–89.

    CAS  PubMed  Google Scholar 

  87. Lehner R, Cui Z, Vance DE. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase. Biochem J 1999;338(Pt 3):761–8.

    CAS  PubMed  Google Scholar 

  88. Staehelin LA. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 1997;11(6):1151–65.

    CAS  PubMed  Google Scholar 

  89. Voeltz GK, Rolls MM, Rapoport TA. Structural organization of the endoplasmic reticulum. EMBO Rep 2002;3(10):944–50.

    CAS  PubMed  Google Scholar 

  90. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997;387(6633):569–72.

    CAS  PubMed  Google Scholar 

  91. Galili G, Sengupta-Gopalan C, Ceriotti A. The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol 1998;38(1–2):1–29.

    CAS  PubMed  Google Scholar 

  92. Loer DS, Herman EM. Cotranslational integration of soybean (Glycine max) oil body membrane protein oleosin into microsomal membranes. Plant Physiol 1993;101(3):993–8.

    CAS  PubMed  Google Scholar 

  93. Sarmiento C, Ross JH, Herman E, Murphy DJ. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 1997;11(4):783–96.

    CAS  PubMed  Google Scholar 

  94. Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 2001;152(5):1071–8.

    CAS  PubMed  Google Scholar 

  95. Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol Biol Cell 2004;15(1):99–110.

    CAS  PubMed  Google Scholar 

  96. Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10(1):51–8.

    CAS  PubMed  Google Scholar 

  97. Souza SC, de Vargas LM, Yamamoto MT, Lien P, Franciosa MD, Moss LG, et al. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem 1998;273(38):24665–9.

    CAS  PubMed  Google Scholar 

  98. Zhang HH, Souza SC, Muliro KV, Kraemer FB, Obin MS, Greenberg AS. Lipase-selective functional domains of perilipin A differentially regulate constitutive and protein kinase A-stimulated lipolysis. J Biol Chem 2003;278(51):51535–42.

    CAS  PubMed  Google Scholar 

  99. Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 2000;275(49):38486–93.

    CAS  PubMed  Google Scholar 

  100. Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, et al. Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 2003;161(6):1093–103.

    CAS  PubMed  Google Scholar 

  101. Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 1997;38(11):2249–63.

    CAS  PubMed  Google Scholar 

  102. Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294(2):309–21.

    CAS  PubMed  Google Scholar 

  103. Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999;274(24):16825–30.

    CAS  PubMed  Google Scholar 

  104. Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol: Endocrinol Metab 2002;283(4):E775–83.

    CAS  Google Scholar 

  105. McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003;44(4):668–73.

    CAS  PubMed  Google Scholar 

  106. Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF, Girod A, et al. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 2003;278(18):15998–6007.

    CAS  PubMed  Google Scholar 

  107. Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J 1996;320(Pt 3):1025–30.

    CAS  PubMed  Google Scholar 

  108. Diaz E, Pfeffer SR. TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 1998;93(3):433–43.

    CAS  PubMed  Google Scholar 

  109. Than NG, Sumegi B, Than GN, Kispal G, Bohn H. Cloning and sequencing of human oncodevelopmental soluble placental tissue protein 17 (PP17): homology with adipophilin and the mouse adipose differentiation-related protein. Tumour Biol 1999;20(4):184–92.

    CAS  PubMed  Google Scholar 

  110. Than NG, Sumegi B, Bellyei S, Berki T, Szekeres G, Janaky T, et al. Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur J Biochem 2003;270(6):1176–88.

    CAS  PubMed  Google Scholar 

  111. Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, et al. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci U S A 2006;103(27):10385–90.

    CAS  PubMed  Google Scholar 

  112. Barbero P, Buell E, Zulley S, Pfeffer SR. TIP47 is not a component of lipid droplets. J Biol Chem 2001;276(26):24348–51.

    CAS  PubMed  Google Scholar 

  113. Wolins NE, Rubin B, Brasaemle DL. TIP47 associates with lipid droplets. J Biol Chem 2001;276(7):5101–8.

    CAS  PubMed  Google Scholar 

  114. Fujimoto T, Kogo H, Ishiguro K, Tauchi K, Nomura R. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. J Cell Biol 2001;152(5):1079–85.

    CAS  PubMed  Google Scholar 

  115. Ostermeyer AG, Ramcharan LT, Zeng Y, Lublin DM, Brown DA. Role of the hydrophobic domain in targeting caveolin-1 to lipid droplets. J Cell Biol 2004;164(1):69–78.

    CAS  PubMed  Google Scholar 

  116. Monks J, Neville MC. Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol 2004;560(Pt 1):267–80.

    CAS  PubMed  Google Scholar 

  117. Knott TJ, Pease RJ, Powell LM, Wallis SC, Rall SC, Jr., Innerarity TL, et al. Complete protein sequence and identification of structural domains of human apolipoprotein B. Nature 1986;323(6090):734–8.

    CAS  PubMed  Google Scholar 

  118. Schlegel A, Lisanti MP. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 2000;275(28):21605–17.

    CAS  PubMed  Google Scholar 

  119. Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, et al. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001;12(9):741–9.

    Article  CAS  PubMed  Google Scholar 

  120. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, et al. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002;277(35):32253–7.

    CAS  PubMed  Google Scholar 

  121. Nielsen RL, Andersen MH, Mabhout P, Berglund L, Petersen TE, Rasmussen JT. Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. J Dairy Sci 1999;82(12):2543–9.

    Article  CAS  PubMed  Google Scholar 

  122. Garcia A, Subramanian V, Sekowski A, Bhattacharyya S, Love MW, Brasaemle DL. The amino and carboxyl termini of perilipin A facilitate the storage of triacylglycerols. J Biol Chem 2004;279(9):8409–16.

    CAS  PubMed  Google Scholar 

  123. Garcia A, Sekowski A, Subramanian V, Brasaemle DL. The central domain is required to target and anchor perilipin A to lipid droplets. J Biol Chem 2003;278(1):625–35.

    CAS  PubMed  Google Scholar 

  124. Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004;12(7):1199–207.

    CAS  PubMed  Google Scholar 

  125. Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE. Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 2003;278(39):37713–21.

    CAS  PubMed  Google Scholar 

  126. Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic; 1974. p. 3–95.

    Google Scholar 

  127. Stemberger BH, Walsh RM, Patton S. Morphometric evaluation of lipid droplet associations with secretory vesicles, mitochondria and other components in the lactating cell. Cell Tissue Res 1984;236(2):471–5.

    CAS  PubMed  Google Scholar 

  128. Patton S, Stemberger BH, Knudson CM. The supression of milk fat globule secretion by clochicine: an effect coupled to inhibition of exocytosis. Biochim Biophys Acta 1977;499(3):404–10.

    CAS  PubMed  Google Scholar 

  129. Kraemer J, Schmitz F, Drenckhahn D. Cytoplasmic dynein and dynactin as likely candidates for microtubule-dependent apical targeting of pancreatic zymogen granules. Eur J Cell Biol 1999;78(4):265–77.

    CAS  PubMed  Google Scholar 

  130. Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, et al. KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 2001;155(1):77–88.

    CAS  PubMed  Google Scholar 

  131. Palmer CA, Lubon H, McManaman JL. Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res 2003;12(3):283–92.

    CAS  PubMed  Google Scholar 

  132. McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol 2004;554:263–79.

    CAS  PubMed  Google Scholar 

  133. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A 1997;94(7):3425–30.

    CAS  PubMed  Google Scholar 

  134. Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 2002;16(24):3223–35.

    CAS  PubMed  Google Scholar 

  135. Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci U S A 2004;101(27):10084–9.

    CAS  PubMed  Google Scholar 

  136. McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol 2002;545(Pt 2):567–79.

    CAS  PubMed  Google Scholar 

  137. Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995;1245(3):285–92.

    PubMed  Google Scholar 

  138. Waud WR, Rajagopalan KV. The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Arch Biochem Biophys 1976;172(2):365–79.

    CAS  PubMed  Google Scholar 

  139. Massey V, Schopfer LM, Nishino T, Nishino T. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J Biol Chem 1989;264(18):10567–73.

    CAS  PubMed  Google Scholar 

  140. McManaman JL, Bain DL. Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 2002;277(24):21261–8.

    CAS  PubMed  Google Scholar 

  141. Frederiks WM, Marx F. A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique. J Histochem Cytochem 1993;41(5): 667–70.

    CAS  PubMed  Google Scholar 

  142. Clare DA, Blakistone BA, Swaisgood HE, Horton HR. Sulfhydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase. Arch Biochem Biophys 1981;211(1):44–7.

    CAS  PubMed  Google Scholar 

  143. McManaman JL, Neville MC, Wright RM. Mouse mammary gland xanthine oxidoreductase: purification, characterization, and regulation. Arch Biochem Biophys 1999;371(2):308–16.

    CAS  PubMed  Google Scholar 

  144. Banghart LR, Chamberlain CW, Velarde J, Korobko IV, Ogg SL, Jack LJ, et al. Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J Biol Chem 1998;273(7):4171–9.

    CAS  PubMed  Google Scholar 

  145. Wiggins D, Gibbons GF. Origin of hepatic very-low-density lipoprotein triacylglycerol: the contribution of cellular phospholipid. Biochem J 1996;320(Pt 2):673–9.

    CAS  PubMed  Google Scholar 

  146. McDonald KL, Auer M. High-pressure freezing, cellular tomography, and structural cell biology. BioTechniques 2006;41(2):137, 139, 141 passim.

    Google Scholar 

  147. Yates JR, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of organelles and large cellular structures. Nat Rev, Mol Cell Biol 2005;6(9):702–14.

    CAS  Google Scholar 

  148. Shillingford JM, Hennighausen L. Experimental mouse genetics—answering fundamental questions about mammary gland biology. Trends Endocrinol Metab 2001;12(9):402–8.

    CAS  PubMed  Google Scholar 

  149. Wiest DL, Burkhardt JK, Hester S, Hortsch M, Meyer DI, Argon Y. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J Cell Biol 1990;110(5):1501–11.

    CAS  PubMed  Google Scholar 

  150. van Anken E, Braakman I. Endoplasmic reticulum stress and the making of a professional secretory cell. Crit Rev Biochem Mol Biol 2005;40(5):269–83.

    CAS  PubMed  Google Scholar 

  151. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia 2003;8(3):287–307.

    PubMed  Google Scholar 

Download references

Acknowledgments

JLM, MER and ECT were supported by NIH grants P01 HD038129 (JLM, MER); R01 HD045965 (JLM); R01 DE015648 (MER); and R21 DK69702 (ECT). The authors thank Drs. M.C. Neville, D. Quissell, and F. Gorelick for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. McManaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McManaman, J.L., Reyland, M.E. & Thrower, E.C. Secretion and Fluid Transport Mechanisms in the Mammary Gland: Comparisons with the Exocrine Pancreas and the Salivary Gland. J Mammary Gland Biol Neoplasia 11, 249–268 (2006). https://doi.org/10.1007/s10911-006-9031-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-006-9031-3

Keywords

Navigation