Skip to main content

Advertisement

Log in

Myoepithelial Cells in the Control of Mammary Development and Tumorigenesis: Data From Genetically Modified Mice

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Until recently, myoepithelial cells—the second major cell population in the mammary epithelium—were not considered to play an important role in the morphogenetic events during gland development. Mouse mutants with changes in the gene expression pattern characteristic of the basal myoepithelial cell layer have been generated and used to show that these cells influence the proliferation, survival and differentiation of luminal cells, modulate stromal–epithelial interactions and actively participate in mammary morphogenesis. Various cellular and molecular mechanisms may underlie the observed phenotypes. These include an unbalanced expression of matrix degrading metalloproteinases (MMPs) and their inhibitors, leading to changes in the composition and organization of the (extracellular matrix) ECM, the production of soluble growth factors affecting stromal and epithelial cell growth and differentiation and direct signaling through cell–cell contacts between the myoepithelial and luminal cell layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEBP-β:

CCAAT enhancer-binding protein β

COX-2:

cyclooxygenase-2

ECM:

extracellular matrix

EphB4:

ephrin receptor B4

K5:

K8, K14, K18, cytokeratin 5, 8, 14 and 18, respectively

LAP:

liver-enriched transcriptional activating protein

Lef:

lymphocyte enhancer factor

LIP:

liver-enriched transcriptional inhibitory protein

MMP:

matrix metalloproteinase

MMTV:

mouse mammary tumor virus

PTHrP:

parathyroid hormone-related protein

Tcf:

T-cell factor

TEB:

terminal end bud

TIMP:

tissue inhibitor of metalloproteinases

WAP:

whey acidic protein

References

  1. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being a myoepithelial cell. Breast Cancer Res 2002;4:224–30.

    Article  PubMed  CAS  Google Scholar 

  2. Gusterson BA, Ross DT, Heath VJ, Stein T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res 2005;7:143–8.

    Article  PubMed  CAS  Google Scholar 

  3. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: Good fences make good neighbors. Breast Cancer Res 2005;7:190–7.

    Article  PubMed  CAS  Google Scholar 

  4. Sternlicht MD, Barsky SH. The myoepithelial defense: A host defense against cancer. Med Hypotheses 1997;48:37–46.

    Article  PubMed  CAS  Google Scholar 

  5. Lakhani SR, O’Hare MJ. The mammary myoepithelial cell–Cinderella or ugly sister? Breast Cancer Res 2001;3:1–4.

    Article  PubMed  CAS  Google Scholar 

  6. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003;71:1–17.

    Article  PubMed  CAS  Google Scholar 

  7. Deugnier MA, Moiseyeva EP, Thiery JP, Glukhova M. Myoepithelial cell differentiation in the developing mammary gland: Progressive acquisition of smooth muscle phenotype. Dev Dyn 1995;204:107–17.

    PubMed  CAS  Google Scholar 

  8. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005;6:622–34.

    Article  PubMed  CAS  Google Scholar 

  9. Daniel CW, Strickland P, Friedmann Y. Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol 1995;169:511–9.

    Article  PubMed  CAS  Google Scholar 

  10. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes RO. Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 1997;139:1025–32.

    Article  PubMed  CAS  Google Scholar 

  11. Sancho E, Batlle E, Clevers H. Live and let die in the intestinal epithelium. Curr Opin Cell Biol 2003;15:763–70.

    Article  PubMed  CAS  Google Scholar 

  12. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev 2003;17:1189–200.

    Google Scholar 

  13. Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004;48:477–87.

    Article  PubMed  CAS  Google Scholar 

  14. Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T, Clevers H. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science 1999;285:1923–6.

    Article  PubMed  CAS  Google Scholar 

  15. Barker N, Huls G, Korinek V, Clevers H. Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. Am J Pathol 1999;154:29–35.

    PubMed  CAS  Google Scholar 

  16. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005;118:3585–94.

    Article  PubMed  CAS  Google Scholar 

  17. Hinck L. The versatile roles of “axon guidance” cues in tissue morphogenesis. Dev Cell 2004;7:783–93.

    Article  PubMed  CAS  Google Scholar 

  18. Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003;4:371–82.

    Article  PubMed  CAS  Google Scholar 

  19. Koster MI, Roop DR. p63 and epithelial appendage development. Differentiation 2004;72:364–70.

    Article  PubMed  CAS  Google Scholar 

  20. Westfall MD, Pietenpol JA. p63: Molecular complexity in development and cancer. Carcinogenesis 2004;25:857–64.

    Article  PubMed  CAS  Google Scholar 

  21. McKeon F. p63 and the epithelial stem cell: More than status quo? Genes Dev 2004;18:465–9.

    Article  PubMed  CAS  Google Scholar 

  22. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398:708–13.

    Article  PubMed  CAS  Google Scholar 

  23. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–8.

    Article  PubMed  CAS  Google Scholar 

  24. Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 2005;19:1986–99.

    Article  PubMed  CAS  Google Scholar 

  25. Senoo M, Matsumura Y, Habu S. TAp63gamma (p51A) and dNp63alpha (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene 2002;21:2455–65.

    Article  PubMed  CAS  Google Scholar 

  26. Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC, Dong SM, Guo Z, Benoit N, Cohen Y, Rechthand P, Califano J, Moon CS, Ratovitski E, Jen J, Sidransky D, Trink B. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 2003;63:2351–7.

    PubMed  CAS  Google Scholar 

  27. Taddei I, Faraldo MM, Teuliere J, Deugnier MA, Thiery JP, Glukhova MA. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003;8:383–94.

    Article  PubMed  Google Scholar 

  28. Gardner H, Kreidberg J, Koteliansky V, Jaenisch R. Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. Dev Biol 1996;175:301–13.

    Article  PubMed  CAS  Google Scholar 

  29. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001;29:418–25.

    Article  PubMed  CAS  Google Scholar 

  30. Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P. Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 2001;153:555–68.

    Article  PubMed  CAS  Google Scholar 

  31. Michaelson JS, Leder P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 2001;20:5093–9.

    Article  PubMed  CAS  Google Scholar 

  32. Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E, Xu X, Seldin DC, Schmidt EV, Taketo MM, Robinson GW, Cardiff RD, Hennighausen L. Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 2002;21:5548–56.

    Article  PubMed  CAS  Google Scholar 

  33. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze’ev A, Thiery JP, Glukhova MA. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005;132:267–77.

    Article  PubMed  CAS  Google Scholar 

  34. Escande B, Lindner V, Massfelder T, Helwig JJ, Simeoni U. Developmental aspects of parathyroid hormone-related protein biology. Semin Perinatol 2001;25:76–84.

    Article  PubMed  CAS  Google Scholar 

  35. Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE, Philbrick WM. Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 1995;121:3539–47.

    PubMed  CAS  Google Scholar 

  36. Dunbar ME, Dann P, Brown CW, Van Houton J, Dreyer B, Philbrick WP, Wysolmerski JJ. Temporally regulated overexpression of parathyroid hormone-related protein in the mammary gland reveals distinct fetal and pubertal phenotypes. J Endocrinol 2001;171:403–16.

    Article  PubMed  CAS  Google Scholar 

  37. Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett 2004;215:1–20.

    Article  PubMed  CAS  Google Scholar 

  38. Wang D, Dubois RN. Cyclooxygenase-2: A potential target in breast cancer. Semin Oncol 2004;31:64–73.

    Article  PubMed  CAS  Google Scholar 

  39. Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, Haudenschild C, Lane TF, Hla T. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 2001;276:18563–9.

    Article  PubMed  CAS  Google Scholar 

  40. Muller-Decker K, Berger I, Ackermann K, Ehemann V, Zoubova S, Aulmann S, Pyerin W, Furstenberger G. Cystic duct dilatations and proliferative epithelial lesions in mouse mammary glands upon keratin 5 promoter-driven overexpression of cyclooxygenase-2. Am J Pathol 2005;166:575–84.

    PubMed  Google Scholar 

  41. Nikolova Z, Djonov V, Zuercher G, Andres AC, Ziemiecki A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci 1998;111:2741–51.

    PubMed  CAS  Google Scholar 

  42. Munarini N, Jager R, Abderhalden S, Zuercher G, Rohrbach V, Loercher S, Pfanner-Meyer B, Andres AC, Ziemiecki A. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci 2002;115:25–37.

    PubMed  CAS  Google Scholar 

  43. Hirai Y, Radisky D, Boudreau R, Simian M, Stevens ME, Oka Y, Takebe K, Niwa S, Bissell MJ. Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta. J Cell Biol 2001;153:785–94.

    Article  PubMed  CAS  Google Scholar 

  44. Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994;263:526–9.

    PubMed  CAS  Google Scholar 

  45. Streuli CH. Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo. Breast Cancer Res 2002;4:137–40.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang M, Magit D, Botteri F, Shi HY, He K, Li M, Furth P, Sager R. Maspin plays an important role in mammary gland development. Dev Biol 1999;215: 278–87.

    Article  PubMed  CAS  Google Scholar 

  47. Radice GL, Sauer CL, Kostetskii I, Peralta Soler A, Knudsen KA. Inappropriate P-cadherin expression in the mouse mammary epithelium is compatible with normal mammary gland function. Differentiation 2003;71:361–73.

    Article  PubMed  CAS  Google Scholar 

  48. Cardiff RD. The biology of mammary transgenes: five rules. J Mammary Gland Biol Neoplasia 1996;1:61–73.

    Article  PubMed  CAS  Google Scholar 

  49. Siegel PM, Hardy WR, Muller WJ. Mammary gland neoplasia: Insights from transgenic mouse models. Bioessays 2000;22:554–63.

    Article  PubMed  CAS  Google Scholar 

  50. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  51. Smalley M, Ashworth A. Stem cells and breast cancer: A field in transit. Nat Rev Cancer 2003;3:832–44.

    Article  PubMed  CAS  Google Scholar 

  52. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004;14:43–7.

    Article  PubMed  CAS  Google Scholar 

  53. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  54. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 2004;10:5367–74.

    Article  PubMed  CAS  Google Scholar 

  55. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  56. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH. The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 1997;3:1949–58.

    PubMed  CAS  Google Scholar 

  57. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML, Barsky SH. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene 2000;19:3449–59.

    Article  PubMed  CAS  Google Scholar 

  58. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6:17–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Glukhova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraldo, M.M., Teulière, J., Deugnier, MA. et al. Myoepithelial Cells in the Control of Mammary Development and Tumorigenesis: Data From Genetically Modified Mice. J Mammary Gland Biol Neoplasia 10, 211–219 (2005). https://doi.org/10.1007/s10911-005-9582-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-9582-8

Key Words

Navigation