Skip to main content

Advertisement

Log in

Pregnancy and Stem Cell Behavior

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The identification of cancer-initiating epithelial subtypes (i.e. cancer stem cells) is important for gaining a more comprehensive understanding of the process of neoplastic transformation and tumorigenesis. Since reproductive history has a major impact on breast tumorigenesis, it is reasonable to assume that pregnancy and lactation have enduring effects on the cancer susceptibility of multipotent progenitors. Using the Cre-lox technology as a tool to genetically label pregnancy-hormone-responsive cells, we identified a mammary epithelial subtype that is abundant in parous females. These pregnancy-induced mammary epithelial cells (PI-MECs) originate from differentiating cells during the first pregnancy and lactation cycle. They do not undergo apoptosis during postlactational remodeling, and they persist throughout the remainder of a female’s life. In this review, we discuss the biological relevance of PI-MECs in multiparous females and their important stem cell-like features, such as self renewal, as well as their ability to produce progeny with diverse cellular fates. Using appropriate animal models, we further demonstrate that PI-MECs are cellular targets for pregnancy-enhanced mammary tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BRCA1/2:

breast and ovarian cancer gene 1/2, early onset

Cre:

site-specific recombinase in bacteriophage P1 (catalyses recombination between loxP sites)

DMBA:

7,12-dimethylbenz[a] anthracene

ER:

estrogen receptor

IGF-1:

insulin-like growth factor 1

Jak2:

Janus kinase 2

LacZ:

gene encoding ß-galactosidase from E. coli

loxP:

locus of crossing (X-ing) over

LTR:

long terminal repeat

MMTV:

mouse mammary tumor virus

NCI:

National Cancer Institute

Neu:

a.k.a. Her2 or ErbB2, member of the epidermal growth factor receptor family

Nkcc1:

sodium, potassium, and chloride (Na+/K+/2Cl) transporter

NMU:

N-nitrosomethyl urea

PI-MECs:

parityinduced mammary epithelial cells

PyVMT:

polyoma middle T oncogene

Rosa:

transcriptionally active locus identified by gene trap in murine embryonic stem cells using a retroviral vector with Reverse-Orientation-Splice-Acceptor

Sca-1:

stem cell antigen 1 or lymphocyte activation protein 6A

Stat5:

signal transducer and activator of transcription 5

TEB:

terminal end bud

TGF-β1:

transforming growth factor beta 1

WAP:

whey acidic protein

Wnt1:

wingless-related MMTV integration site 1

X-Gal:

5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranoside

References

  1. Kelsey JL, Gammon MD. The epidemiology of breast cancer. CA Cancer J Clin 1991;41:146–65.

    CAS  Google Scholar 

  2. Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO. Transient increase in the risk of breast cancer after giving birth. N Engl J Med 1994;331:5–9.

    Article  CAS  PubMed  Google Scholar 

  3. Russo IH, Russo J. Mammary gland neoplasia in long-term rodent studies. Environ Health Perspect 1996;104:938–67.

    CAS  PubMed  Google Scholar 

  4. Medina D, Smith GH. Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst 1999;91:967–9.

    Article  CAS  PubMed  Google Scholar 

  5. Jernstrom H, Lerman C, Ghadirian P, Lynch HT, Weber B, Garber J, Daly M, Olopade OI, Foulkes WD, Warner E, Brunet JS, Narod SA. Pregnancy and risk of early breast cancer in carriers of BRCA1 and BRCA2. Lancet 1999;354:1846–50.

    Article  CAS  PubMed  Google Scholar 

  6. Jernstrom H, Lubinski J, Lynch HT, Ghadirian P, Neuhausen S, Isaacs C, Weber BL, Horsman D, Rosen B, Foulkes WD, Friedman E, Gershoni-Baruch R, Ainsworth P, Daly M, Garber J, Olsson H, Sun P, Narod SA. Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2004;96:1094–8.

    CAS  PubMed  Google Scholar 

  7. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T, Hennighausen L, Wynshaw-Boris A, Deng CX. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999;22:37–43.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 1996;56:402–4.

    CAS  PubMed  Google Scholar 

  9. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 1996;274:2057–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg CL, Larson PS, Romo JD, De Las MA, Faller DV. Microsatellite alterations indicating monoclonality in atypical hyperplasias associated with breast cancer. Hum Pathol 1997;28:214–19.

    Article  CAS  PubMed  Google Scholar 

  11. Smith GH, Chepko G. Mammary epithelial stem cells. Microsc Res Tech 2001;52:190–203.

    Article  CAS  PubMed  Google Scholar 

  12. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002;245:42–56.

    Article  CAS  PubMed  Google Scholar 

  13. Medina D. Serial transplantation of carcinogen-treated mammary nodule outgrowths. 3. Dissociation of carcinogen-induced cell variants by dose and chemical structure of carcinogen. J Natl Cancer Inst 1973;50:1555–9.

    CAS  PubMed  Google Scholar 

  14. Smith GH, Vonderhaar BK, Graham DE, D. Medina. Expression of pregnancy-specific genes in preneoplastic mouse mammary tissues from virgin mice. Cancer Res 1984;44:3426–37.

    CAS  PubMed  Google Scholar 

  15. Russo J, Tay LK, Russo IH. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res Treat 1982;2:5–73.

    CAS  PubMed  Google Scholar 

  16. Katz BZ, Eshel R, Sagi-Assif O, Witz IP. An association between high Ly–6A/E expression on tumor cells and a highly malignant phenotype. Int J Cancer 1994;59:684–91.

    CAS  PubMed  Google Scholar 

  17. Cohn MA, Kramerov D, Hulgaard EF, Lukanidin EM. The differentiation antigen Ly-6E.1 is expressed in mouse metastatic tumor cell lines. FEBS Lett 1997;403:181–5.

    CAS  Google Scholar 

  18. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  19. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  20. Thordarson G, Slusher N, Leong H, Ochoa D, Rajkumar L, Guzman R, Nandi S, Talamantes F. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: Evidence that IGF-I enhances cancer progression through estrogen receptor-alpha activation via the mitogen-activated protein kinase pathway. Breast Cancer Res 2004;6:R423–36.

    Article  CAS  PubMed  Google Scholar 

  21. Sivaraman L, Stephens LC, Markaverich BM, Clark JA, Krnacik S, Conneely OM, O’Malley BW, Medina D. Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis 1998;19:1573–81.

    Article  CAS  PubMed  Google Scholar 

  22. Sivaraman L, Conneely OM, Medina D, O’Malley BW. p53 is a potential mediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc Nat Acad Sci USA 2001;98:12379–84.

    Article  CAS  PubMed  Google Scholar 

  23. Vonderhaar BK, Smith GH, Pauley RJ, Rosen JM, Topper YJ. Difference between mammary epithelial cells from mature virgin and primiparous mice. Cancer Res 1978;38:4059–65.

    CAS  PubMed  Google Scholar 

  24. Smith GH, Vonderhaar BK. Functional differentiation in mouse mammary gland epithelium is attained through DNA synthesis, inconsequent of mitosis. Dev Biol 1981;88:167–79.

    Article  CAS  PubMed  Google Scholar 

  25. Vonderhaar BK, Smith GH. Dissociation of cytological and functional differential in virgin mouse mammary gland during inhibition of DNA synthesis. J Cell Sci 1982;53:97–114.

    CAS  PubMed  Google Scholar 

  26. Smith GH. Functional differentiation of virgin mouse mammary epithelium in explant culture is dependent upon extracellular proline. J Cell Physiol 1987;131:190–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM. Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol 2001;15:1993–2009.

    Article  CAS  PubMed  Google Scholar 

  28. D’Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, Cox JD, Wang JY, Ha SI, Keister BA, Chodosh LA. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol 2002;16:2034–51.

    Article  CAS  PubMed  Google Scholar 

  29. Huggins C, Moon RC, Morii S. Extinction of experimental mammary cancer. I. Estradiol-17beta and progesterone. Proc Natl Acad Sci USA 1962;48:379–86.

    CAS  PubMed  Google Scholar 

  30. Russo IH, Koszalka M, Russo J. Effect of human chorionic gonadotropin on mammary gland differentiation and carcinogenesis. Carcinogenesis 1990;11:1849–55.

    CAS  PubMed  Google Scholar 

  31. Guzman RC, Yang J, Rajkumar L, Thordarson G, Chen X, Nandi S. Hormonal prevention of breast cancer: Mimicking the protective effect of pregnancy. Proc Natl Acad Sci USA 1999;96:2520–5.

    Article  CAS  PubMed  Google Scholar 

  32. Sivaraman L, Medina D. Hormone-induced protection against breast cancer. J Mammary Gland Biol Neoplasia 2002;7:77–92.

    Article  PubMed  Google Scholar 

  33. Ginger MR, Rosen JM. Pregnancy-induced changes in cell-fate in the mammary gland. Breast Cancer Res 2003;5:192–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: Its role in functional adaptation and tissue renewal. Development 2002;129:1377–86.

    CAS  PubMed  Google Scholar 

  35. Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L. Cre-mediated gene deletion in the mammary gland. Nucl Acids Res 1997;25:4323–30.

    Article  CAS  PubMed  Google Scholar 

  36. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999;21:70–1.

    CAS  PubMed  Google Scholar 

  37. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene 2004;23:6980–5.

    CAS  PubMed  Google Scholar 

  38. Ludwig T, Fisher P, Murty V, Efstratiadis A. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 2001;20:3937–48.

    CAS  PubMed  Google Scholar 

  39. Robinson GW, McKnight RA, Smith GH, Hennighausen L. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 1995;121:2079–90.

    CAS  PubMed  Google Scholar 

  40. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 1995;168:47–61.

    CAS  PubMed  Google Scholar 

  41. Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996;39:21–31.

    CAS  PubMed  Google Scholar 

  42. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998;125:1921–30.

    CAS  PubMed  Google Scholar 

  43. Kamiya K, Gould MN, Clifton KH. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc Soc Exp Biol Med 1998;219:217–25.

    CAS  PubMed  Google Scholar 

  44. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells (PI-MEC) are pluripotent, self–renewing and sensitive to TGF–b1 expression. Oncogene, 2005;24:552–60.

    CAS  PubMed  Google Scholar 

  45. Lin H. The stem–cell niche theory: Lessons from flies. Nat Rev Genet 2002;3:931–940.

    CAS  PubMed  Google Scholar 

  46. Boulanger CA, Smith GH. Reducing mammary cancer risk through premature stem cell senescence. Oncogene 2001;20(18):2264–72.

    CAS  PubMed  Google Scholar 

  47. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: Gene discovery, progression to malignancy and cellular pathways. Oncogene 2000;19:992–1001.

    CAS  PubMed  Google Scholar 

  48. Wellings SR, Jensen HM, Marcum RG. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 1975;55:231–73.

    CAS  PubMed  Google Scholar 

  49. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992;89:10578–82.

    CAS  PubMed  Google Scholar 

  50. Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli FA, Wakefield LM, Ward JM, Green JE. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000;19:968–88.

    CAS  PubMed  Google Scholar 

  51. Reed W, Sandstad B, Holm R, Nesland JM. The prognostic impact of hormone receptors and c-erbB-2 in pregnancy-associated breast cancer and their correlation with BRCA1 and cell cycle modulators. Int J Surg Pathol 2003;11:65–74.

    PubMed  Google Scholar 

  52. Krempler A, Henry MD, Triplett AA, Wagner KU. Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J Biol Chem 2002;277:43216–23.

    CAS  PubMed  Google Scholar 

  53. Wagner KU, Krempler A, Qi Y, Park K, Henry MD, Triplett AA, Riedlinger G, Rucker EB III, Hennighausen L. Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol 2003;23:150–62.

    CAS  PubMed  Google Scholar 

  54. Carstens MJ, Krempler A, Triplett AA, van Lohuizen M, Wagner KU. Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in Tsg101-deficient cells. J. Biol. Chem. 2004;279:35984–94.

    CAS  PubMed  Google Scholar 

  55. Wagner KU, Krempler A, Triplett AA, Qi Y, George NM, Zhu J, Rui H. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 2004;24:5510–20.

    CAS  PubMed  Google Scholar 

  56. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, Robinson GW, Hennighausen L. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24:8037–47.

    CAS  PubMed  Google Scholar 

  57. Ahmed F, Wyckoff J, Lin EY, Wang W, Wang Y, Hennighausen L, Miyazaki J, Jones J, Pollard JW, Condeelis JS, Segall JE. GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res 2004;62:7166–9.

    Google Scholar 

  58. Kisseberth, WC, Sandgren EP. Polyclonal development of mouse mammary preneoplastic nodules. Cancer Res 2004;64:857–63.

    CAS  PubMed  Google Scholar 

  59. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Gene Dev 2000;14:650–4.

    CAS  PubMed  Google Scholar 

  60. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Rowlands T, Egeblad M, Cowin P, Werb Z, Tan LK, Rosen JM, Varmus HE. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003;100:15853–58.

    CAS  PubMed  Google Scholar 

  61. Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004;101:4158–63.

    Article  CAS  PubMed  Google Scholar 

  62. Scadden DT. Cancer stem cells refined. Nat Immunol 2004;5:701–3.

    CAS  PubMed  Google Scholar 

  63. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004;5:738–43.

    Article  CAS  PubMed  Google Scholar 

  64. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004;118:635–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay-Uwe Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, KU., Smith, G.H. Pregnancy and Stem Cell Behavior. J Mammary Gland Biol Neoplasia 10, 25–36 (2005). https://doi.org/10.1007/s10911-005-2538-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-005-2538-1

Navigation