Skip to main content
Log in

Mathematical modeling of solution deionization by sorption on aerogel electrodes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The mathematical modeling is used to study the dynamics of solution deionization by sorption on aerogel electrodes. The matter transport by solution flow, diffusion, and sorption in pores are simulated. Several models are proposed to describe the phenomenon with different degree of approximation. Problems arising in numerical computing and ways to solve them are described. It is shown that at low solution concentrations and a small pore size the effect of electro-sorption is not reduced to the formation of a double electric layer on the pore surface, which uptakes ions from the solution. In addition to the formation of this layer distributed ionic charge is accumulated all over the pore space. The dependence of the effective diffusion coefficient inside the porous electrode on the ion concentration is found. Examples of calculating the deionization process at one-cycle and multi-cycle sorption are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Lz :

Channel length (m)

H :

The thickness of porous-material layer (m)

L :

The distance between layers, channel width (m)

\(\eta \) :

Sorbent porosity (dimensionless)

z :

The coordinate along the channel,   \(0\le z\le Lz\) (m)

x :

The coordinate across the channel,   \(-\,H\le x\le L+H\) (m)

r :

Radial coordinate in a pore,   \(0\le r\le R\) (m)

t :

Time,   \(t\ge 0\) (s)

T :

Time interval within which voltage is applied to the capacitor (s)

\(R_{0}\) :

Pore radius (m)

\(r_{hyd}\) :

The radius of ion hydrate envelope,    (m)

\(\Phi \) :

The voltage applied to the capacitor (v)

\(\varphi \) :

The local value of the potential measured relative the center of the channel (v)

\(u=\frac{\phi q}{kT}\) :

Normalized local potential,   \(u_0 -\frac{\Phi q}{2kT}\) (dimensionless)

v :

Flow rate in the channel \(( \mathrm {m \, s^{-1}})\)

C :

Electrolyte concentration in the channel \((\mathrm {mol\,L^{-1}})\)

\(C_\pm \) :

Concentrations of ions of appropriate signs \((\mathrm {mol\,L^{-1}})\)

\(j_\pm \) :

Fluxes of ions of different signs,   \(j=(j_+ +j_- )/2 \quad (\mathrm {mol\,m^{-2}\,s^{-1}})\)

\(C_0\) :

Electrolyte concentration at channel entry and at the initial moment \((\mathrm {mol\,L^{-1}})\)

D :

Diffusion coefficient \(( \mathrm {m^{2}\, s^{-1}})\)

\(\overline{C} (x,z,t)\) :

Mean concentration in a pore cross-section \((\mathrm {mol\,L^{-1}})\)

V(R):

The relative volume occupied by pores of radius R (dimensionless)

\(D_{ex}\, \mathrm{and}\, D_{in}\) :

   Diffusion coefficients in the channel and sorbent \(( \mathrm {m^{2}\,s^{-1}})\)

References

  1. M.A. Anderson, A.L. Cudero, J. Palma, Electrochim. Acta 55, 3845–3856 (2010)

    Article  CAS  Google Scholar 

  2. O.N. Demirer, R.M. Naylor, C.A. Rios Perez, E. Wilkes, C. Hidrovo, Desalination 314, 130–138 (2013)

    Article  CAS  Google Scholar 

  3. M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 8, 2296–2319 (2015)

    Article  CAS  Google Scholar 

  4. Y. Oren, Desalination 228, 10–29 (2008)

    Article  CAS  Google Scholar 

  5. G. Rasines, P. Lavela, C. Macías, M. Haro, C.O. Ania, J.L. Tirado, J. Electroanal. Chem. 671, 92–98 (2012)

    Article  CAS  Google Scholar 

  6. A. Faisal, Al Marzooqi, A. Amal, Al Ghaferi, I. Saadat, N. Hilal, Desalination 342, 3–15 (2014)

    Article  Google Scholar 

  7. D. Marmanis, A. Christoforidis, K. Ouzounis, K. Dermentzis, Global NEST J. 16(4), 609–615 (2014)

    Google Scholar 

  8. D.A.B. Iozzo, M. Tong, G. Wu, E.P. Furlani, J. Phys. Chem. C 119(45), 25235–25242 (2015)

    Article  CAS  Google Scholar 

  9. K.L. Yang, T.Y. Ying, J. Sátira, Langmuir 17, 1961–1969 (2001)

    Article  CAS  Google Scholar 

  10. C.A. Rios Perez, O.N. Demirer, R.L. Clifton, R.M. Naylor, C.H. Hidrovo, J. Electrochem. Soc. 160(3), E13–E21 (2013)

    Article  Google Scholar 

  11. D.B. Robinson, C.A.M. Wu, B.W. Jacobs, J. Electrochem. Soc. 157(8), A912–A918 (2010)

    Article  CAS  Google Scholar 

  12. K. Honda, M. Yoshimura, K. Kawakita, A. Fujishima, Y. Sakamoto, K. Yasui, N. Nishio, H. Masudac, J. Electrochem. Soc. 151(4), A532–A541 (2004)

    Article  CAS  Google Scholar 

  13. N.C. Hoyt, J.S. Wainright, R.F. Savinell, J. Electrochem. Soc. 162(4), A652–A657 (2015)

    Article  CAS  Google Scholar 

  14. C. Niu, E.K. Sichel, R. Hoch, D. Moy, H. Tennet, Appl. Phys. Lett. 70(11), 1480–1482 (1997)

    Article  CAS  Google Scholar 

  15. A. Hemmatifar, M. Stadermann, J.G. Santiago, J. Phys. Chem. C 119(44), 24681–24694 (2015)

    Article  CAS  Google Scholar 

  16. M.E. Sussz, Electrochem. Soc. 164(9), E270–E275 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.A. Mathematical modeling of solution deionization by sorption on aerogel electrodes. J Math Chem 56, 700–712 (2018). https://doi.org/10.1007/s10910-017-0825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-017-0825-x

Keywords

Navigation