Skip to main content
Log in

Modeling the Operation of a Microseparator Taking into Account the Changes in the Thickness of the Stern Layer on the Surfaces of Electrode Pores

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Mathematical modeling is used to study the deionization dynamics of an electrolyte solution via sorption on aerogel electrodes. The transfer of mass by the solution’s flow is considered, as are diffusion and sorption inside pores. It is shown that the changing thickness of the Stern layer near the surfaces of electrode pores during the electrodiffusion of ions into them must be considered in order to describe these physical processes correctly. The change in the Stern layer thickness is calculated, and some examples are presented of modeling the deionization process in a cyclic mode at different values of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. A. Al Marzooqi, A. A. Al Ghaferi, I. Saadat, et al., Desalination 342, 3 (2014).

    Article  CAS  Google Scholar 

  2. Yu. M. Volfkovich, A. A. Mikhailn, A. Yu. Rychagov, et.al., “Electrodes based on carbon nanomaterials: structure, properties and application to capacitive deionization in static cells,” in Nanooptics, Nanophotonics, Nanostructures and Their Applications (Springer International Publishing, 2018), pp. 127–146. https://doi.org/10.1007/978-3-319-91083-3_9

  3. Yu. M. Vol’fkovich, A. Yu. Rychagov, V. E. Sosenkin, O. N. Efimov, M. I. Os’makov, and A. F. Seliverstov, Russ. J. Electrochem. 50, 1099 (2014). https://doi.org/10.7868/S0424857014110127

    Article  Google Scholar 

  4. S. Porada, R. Zhao, A. van der Wal, et al., Prog. Mater. Sci. 58, 1388 (2013).

    Article  CAS  Google Scholar 

  5. M. E. Suss, S. Porada, X. Sun, et al., Energy Environ. Sci. 8, 2296 (2015).

    Article  CAS  Google Scholar 

  6. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta 55, 3845 (2010).

    Article  CAS  Google Scholar 

  7. Yu. M. Vol’fkovich, A. A. Mikhalin, D. A. Bograchev, and V. E. Sosenkin, Russ. J. Electrochem. 48, 424 (2012).

    Article  Google Scholar 

  8. Y. Oren, Desalination 228, 10 (2008).

    Article  CAS  Google Scholar 

  9. G. Rasines and P. Lavela, et al., J. Electroanal. Chem. 671, 92 (2012).

    Article  CAS  Google Scholar 

  10. D. Marmanis, A. Christoforidis, K. Ouzounis, et al., Global NEST J. 16, 609 (2014).

    Article  Google Scholar 

  11. D. A. B. Iozzo, M. Tong, G. Wu, et al., J. Phys. Chem. C 119, 25235 (2015).

    Article  CAS  Google Scholar 

  12. B. J. Kirby, The Diffuse Structure of the Electrical Double Layer. www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidics.html.

  13. K. Yang, T. Ying, S. Yiacoumi, et al., Langmuir 17, 1961 (2001).

    Article  CAS  Google Scholar 

  14. C. A. RiosPerez, O. N. Demirer, R. L. Clifton, et al., J. Electrochem. Soc. 160, E13 (2013).

  15. D. B. Robinson, Ch. M. Wu, and B. W. Jacobs, J. Electrochem. Soc. 157, A912 (2010).

    Article  CAS  Google Scholar 

  16. K. Honda, M. Yoshimura, K. Kawakita, et al., J. Electrochem. Soc. 151, A532 (2004).

    Article  CAS  Google Scholar 

  17. N. C. Hoyt, J. W. Wainright, and R. F. Savinell, J. Electrochem. Soc. 162, A652 (2015).

    Article  CAS  Google Scholar 

  18. C. Niu, E. K. Sichel, R. Hoch, et al., Appl. Phys. Lett. 70, 1480 (1997).

    Article  CAS  Google Scholar 

  19. A. Hemmatifar, M. Stadermann, and J. G. Santiago, J. Phys. Chem. C 119, 24681 (2015).

    Article  CAS  Google Scholar 

  20. N. A. Tikhonov, J. Math. Chem. 56, 700 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tikhonov.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, N.A., Tokmachev, M.G. Modeling the Operation of a Microseparator Taking into Account the Changes in the Thickness of the Stern Layer on the Surfaces of Electrode Pores. Russ. J. Phys. Chem. 93, 2528–2533 (2019). https://doi.org/10.1134/S0036024419120306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120306

Keywords:

Navigation