Skip to main content
Log in

On the numerical solution of the general kinetic “K-angle” reaction system

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In a recent paper by Tobias and Tasi in this journal the authors discuss the “K-angle” kinetic problem and focus on its analytic solution for \(K\le 5\). The authors correctly mention that the case \(K>5\) requires numerical treatment in the part of the procedure where the eigenvalues of the characteristic polynomial are determined by solving an algebraic equation of degree greater than or equal to five. In this work we focus on this algorithmic part by suggesting a suitable and effective numerical procedure. For the sake of simplifying the numerical procedure and to formulate the whole algorithm in an easy programmable way we reformulate the “K-angle” problem by introducing double indices for the reactions between the components. This notation allows to greatly simplify the formulation of the problem and the description of the whole algorithmic procedure and facilitates the creation of appropriate programming tools. We present an example of such a tool, namely a software module named K-angle within the programming environment of CAS Mathematica possessing certain visualization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Davis, K. Sigmon, MATLAB Primer, 7th edn. (Chapman and Hall/CRC, Boca Raton, 2005)

    Google Scholar 

  2. S. Dimitrov, S. Markov, Metabolic rate constants: some computational aspects. Math. Comput. Simul. (2015). http://www.sciencedirect.com/science/article/pii/S0378475415002529 (in press)

  3. A. Hernandes, M. Ruiz, An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. Bioinformatics (Applications Note) 14, 227–228 (1998)

    Article  Google Scholar 

  4. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASI—a complex pathway simulator. Bioinformatics 22, 3067–3074 (2006)

    Article  CAS  Google Scholar 

  5. A. Iliev, N. Kyurkchiev, Nontrivial Methods in Numerical Analysis: Selected Topics in Numerical Analysis (LAP LAMBERT Academic Publishing, Saarbrucken, 2010)

    Google Scholar 

  6. V. Korobov, V. Ochkov, Chemical Kinetics with Mathcad and Maple (Springer, Wien, 2011)

    Book  Google Scholar 

  7. N. Kyurkchiev, Initial Approximation and Root Finding Methods (WILEY-VCH Verlag Berlin GmbH, Berlin, 1998)

    Google Scholar 

  8. N. Kjurkchiev, Some remarks on the Weierstrass root-finding method. C. R. Acad. Bulgar. Sci. 46, 17–20 (1993)

    Google Scholar 

  9. N. Kyurkchiev, A note on the Le Verrier-Fadeev’s method. BIT Numer. Math. 35(1), 182–186 (1996)

    Article  Google Scholar 

  10. N. Kyurkchiev, A. Andreev, V. Popov, Iterative methods for the computation of all multiple roots of an algebraic polynomial. Annu. Univ. Sofia, Fac. Math. Mech. 78, 178–185 (1984)

    Google Scholar 

  11. N. Kyurkchiev, S. Markov, Two interval methods for algebraic equations with real roots. PLISKA Studia mathematica bulgarica 5, 118–131 (1983)

    Google Scholar 

  12. F. Leone, J. Baranauskas, R. Furriel, SigrafW: An easy to use program for fitting enzyme kinetic data. Biochem. Mol. Biol. Educ. 33(6), 399–403 (2005)

    Article  CAS  Google Scholar 

  13. M. Mincheva, Oscillations in non-mass action kinetics models of biochemical reaction networks arising from pairs of subnetworks. J. Math. Chem. 50, 1111–1125 (2012). doi:10.1007/s10910-011-9955-8

    Article  CAS  Google Scholar 

  14. S. Nelatury, Ch. Nelatury, M. Vagula, Parameter estimation in different enzyme reactions. Adv. Enzyme Res. 2, 14–26 (2014)

    Article  Google Scholar 

  15. L. Pogliani, M.N. Berberan-Santos, J.M.G. Martinho, Matrix and convolution methods in chemical kinetics. J. Math. Chem. 20, 193–210 (1996)

    Article  CAS  Google Scholar 

  16. Bl Sendov, A. Andreev, N. Kyurkchiev, Numerical solution of polynomial equations, in Handbook of Numerical Analysis, vol. III, ed. by P. Ciarlet, J. Lions (Elsevier Science Publ., Amsterdam, 1994)

    Google Scholar 

  17. R. Tobias, G. Tasi, Simple algebraic solutions to the kinetic problems of triangle, quandrangle and pentangle reactions. J. Math. Chem. (2015). doi:10.1007/s10910-015-0550-2

    Google Scholar 

  18. K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Funktion einer Veränderlichen dargestellt werden kann als Produkt linearer Funktionen derselben Veränderlichen. Gez. Werke, Bd. 3 (Mayer and Müller, Leipzig, 1903)

    Google Scholar 

  19. P. Williams, ENZPACK: a microcomputer program to aid in the teaching of enzyme kinetics. Biochem. Educ. 11, 141–143 (1983)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the referee’s suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kyurkchiev.

Appendix

Appendix

1.1 Problems related to the study of the characteristic polynomial of nth degree for the computation of the eigenvalues

We consider the characteristic polynomial \(D(\lambda )\) of the \(n \times n\) matrix A

$$\begin{aligned} D(\lambda )=\left| A-\lambda I\right| =(-1)^n\left( \lambda ^n+p_1\lambda ^{n-1}+\cdots +p_{n-1}\lambda +p_n\right) \end{aligned}$$
(4)

with simple real or complex zeros: \(\lambda _1, \lambda _2 ,\ldots ,\lambda _n\).

One of the most effective methods for the simultaneous determination of the roots of a polynomial, the origin of which is attributed to Weierstrass [18], is the one proposed by Kerner and, independently, by Durand and Dochev. The method known as the Weierstrass method, the Durand–Kerner method, or the Weierstrass–Dochev method.

The simultaneous computation of the zeros of (4) by the Weierstrass method follows the scheme:

$$\begin{aligned} \lambda _i^{k+1}=\lambda _i^k- \frac{{\displaystyle D\left( \lambda _i^k\right) }}{{\displaystyle \prod ^n_{j\ne i}\left( \lambda _i^k-\lambda _j^k\right) }},\, \quad i=1,\ldots ,n; \, \, k=0,1,2,\ldots . \end{aligned}$$
(5)

The convergence rate of the scheme (5) is given in the following:

Theorem

[11] Let \(0<q<1\), \(d={\displaystyle \min _{i\ne j}}|\lambda _i-\lambda _j|\) and \(0<c\le {d}/{1+\alpha n}\), where \(\alpha = 1.7632283\ldots \) is determined by the equality \(\alpha = e^{{1}/{\alpha }}\). If the initial approximations \(\{\lambda _i^0\}, \, i=1,2,\ldots ,n\) of the roots \(\{\lambda _i\}; \, i=1,2,\ldots ,n\) of the equation \(D(\lambda )=0\) satisfy the inequalities \(|\lambda _i^0-\lambda _i|\le cq,\, i=1,2,\ldots ,n\), then for the approximations given by (5) the inequalities

$$\begin{aligned} |\lambda _i^k-\lambda _i|\le cq^{2^k}, \quad i=1,2,\ldots ,n. \end{aligned}$$
(6)

hold true for all \(k=1,2,\ldots .\)

The method (5) has been modified for multiple roots, see [5, 7, 16].

Remark

Let \(D(\lambda )\) be the polynomial with real or complex multiple zeros \(\lambda _1,\ldots \), \(\lambda _m\) with the multiplicities \(s_i,\, i=1,\ldots ,m\), where \({\displaystyle \sum _{i=1}^m} s_i=n\), i.e.

$$\begin{aligned} D(\lambda )=\prod _{j=1}^m(\lambda -\lambda _j)^{s_j}. \end{aligned}$$

In this case we can use the following procedure [10]:

$$\begin{aligned} \lambda _i^{k+1}=\lambda _i^k-\frac{s_i}{H(\lambda _i^k)-{\displaystyle \sum _{l\ne i}^m}\frac{s_l}{\lambda _i^k-\lambda _l^k-\Delta _l^{R,k}}},\quad i=1,\ldots ,m;\, k=0,1,2,\ldots . \end{aligned}$$

where

$$\begin{aligned} H(\lambda _i^k)= & {} \frac{D^{'}(\lambda _i^k)}{D(\lambda _i^k)} \\ \Delta _t^{R,k}= & {} -s_i\left( H(\lambda _i^k)-{\displaystyle \sum _{q\ne t}^m}\frac{s_q}{\lambda _t^k-\lambda _q^k-\Delta _q^{R-1,k}}\right) ^{-1},\, t=1,2,\ldots ,m \\ \Delta _t^{0,k}= & {} 0,\, t=1,2,\ldots ,m;\, k=0,1,2,\ldots . \end{aligned}$$

The following theorem holds

Theorem

[10] Let \(0<q<1\), \(d={\displaystyle \min _{i\ne j}}|\lambda _i-\lambda _j|\) and \(c>0\) is a number such that

$$\begin{aligned}&d>c(2+3qn/s),\\&c^2(n-s^{'})\left( (d-c)(d-2c-sqn/s)\left( 1-\frac{(n/s+1)(n/s^{'}-1)c^2q^2}{(d-c)(d-2c-sqn/s)}\right) \right) ^{-1}<1,\\&s={\displaystyle \max _{1\le j\le m}} s_j;\, \, s^{'}={\displaystyle \min _{1\le j\le m}} s_j. \end{aligned}$$

If the initial approximations \(\{\lambda _i^0\}, \, i=1,2,\ldots ,m\) of the roots \(\{\lambda _i\}; \, i=1,2,\ldots ,m\) satisfy the inequalities \(|\lambda _i^0-\lambda _i|\le cq,\, i=1,2,\ldots ,m\), then the estimate

$$\begin{aligned} |\lambda _i^k-\lambda _i|\le cq^{(2R+3)^k}, \, i=1,2,\ldots ,m; \, k=0,1,2,\ldots \end{aligned}$$

hold true.

1.2 The Le Verrier method in terms of the Weierstrass procedure

We next give an alternative formulation of the Le Verrier-Fadeev method in the terms of the Weierstrass root-finding method. Some computational aspects are discussed. From (4) we have

$$\begin{aligned} p_m=(-1)^m{\displaystyle \sum _{1\le i_1<i_2<\cdots <i_m\le n}}\lambda _{i_1}\lambda _{i_2} \cdots \lambda _{i_m} \end{aligned}$$

The Newton-Girard formulae give the connection between the coefficients \(p_r\), and the power sums:

$$\begin{aligned} S_r=\lambda _1^r+\cdots +\lambda _n^r \end{aligned}$$
$$\begin{aligned} S_r+S_{r-1}p_1+S_{r-2}p_2+\cdots +S_1p_{r-1}+rp_r=0,\, (r\le n). \end{aligned}$$
(7)

From (7) it follows

$$\begin{aligned}&p_1=-S_1, \nonumber \\&{\displaystyle p_2=-\frac{1}{2}(S_1p_1+S_2),} \nonumber \\&\ldots \nonumber \\&{\displaystyle p_r=-\frac{1}{r}(S_1p_{r-1}+S_2p_{r-2}+\cdots +S_{r-1}p_1+S_r).} \end{aligned}$$
(8)

Obviously, \(S_r=\mathrm{Trace}\left( A^r\right) \) and from (8) we obtain the coefficients \(p_r\).

The process is called Le Verrier method. In a number of cases the calculations are quite difficult.

An alternative formulation of Le Verrier’s method is the following:

Let \(C(\lambda )\) be the companion matrix of \(A-\lambda I\) such that

$$\begin{aligned} C(\lambda )\left( A-\lambda I\right) =D(\lambda )I. \end{aligned}$$

We form the matrix \(C(\lambda )\) in the following way

$$\begin{aligned} C(\lambda )=C_0\lambda ^{n-1}+C_1\lambda ^{n-2}+\cdots +C_{n-2}\lambda +C_{n-1}, \end{aligned}$$

where \(C_i,\, i=0,1,\ldots , n-1\) are \(n \times n\) matrices, independent of \(\lambda \). Then the matrices \(C_j\) are immediately computed from the following system of Fadeev identities:

$$\begin{aligned}&-C_0=(-1)^nI, \nonumber \\&C_1-C_0A=(-1)^{n-1}p_1I, \nonumber \\&C_2-C_1A=(-1)^{n-1}p_2I, \nonumber \\&\ldots \nonumber \\&C_{n-1}-C_{n-2}A=(-1)^{n-1}p_{n-1}I, \nonumber \\&C_{n-1}A=(-1)^np_nI. \end{aligned}$$
(9)

Given two distinct approximations \(\lambda _i^k,\, \lambda _i^{k+1},\, i=1,2,\ldots ,n\), obtained from the Weierstrass series (5).

We have [8]:

(10)

Using (9) and (10) we obtain [9]:

$$\begin{aligned}&C_1=(-1)^{n-1}\left[ A-{\displaystyle \sum _{i=1}^n}\lambda _i^{k+1}\right] I, \\&\mathrm{Trace}\left( C_1A\right) =(-1)^n2\left( {\displaystyle \sum ^n_{i=1}}\lambda _i^{k+1}{\displaystyle \sum ^n_{j\ne i}}\lambda _j^k- {\displaystyle \sum ^n_{l<s}}\lambda _l^k\lambda _s^k\right) , \nonumber \\&\ldots \nonumber \\&\mathrm{Trace}\left( C_{n-1}A\right) =n\left( {\displaystyle \sum ^n_{i=1}}\lambda _i^{k+1} {\displaystyle \prod ^n_{j\ne i}}\lambda _j^k-(n-1){\displaystyle \prod ^n_{j=1}}\lambda _j^k\right) , \end{aligned}$$

and consequently we find \(\det |A|\), the companion matrix, and consequently we can determine the matrix \(A^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyurkchiev, N., Markov, S. On the numerical solution of the general kinetic “K-angle” reaction system. J Math Chem 54, 792–805 (2016). https://doi.org/10.1007/s10910-016-0592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0592-0

Keywords

Navigation